Автор работы: Пользователь скрыл имя, 21 Марта 2011 в 18:31, курсовая работа
Цель данной курсовой работы – изучить методы математического программирования, общую задачу линейного программирования.
Задачами курсовой работы:
1. Изучить понятие методов математического программирования.
2. Составить общую задачу линейного программирования.
3.Рассмотреть на примерах решения задач линейного программирования
Введение 3
1. Методы линейного программирования 5
1.1. История проблемы поиска экстремума 7
1.2. Общая постановка задачи линейного программирования (ЗЛП). Примеры ЗЛП 10
1.3. Алгоритм симплекс-метода 12
1.4. Метод полного исключения Жордана 16
2. Задачи линейного программирования 19
2.1. Геометрическое решение ЗЛП 23
2.2. Основные теоремы линейного программирования 26
Заключение 28
Список используемой литературы 29
По данному условию сформулируем задачу линейного программирования.
Обозначим: x1 - количество выпускаемых ежедневно хоккейных клюшек, x2 - количество выпускаемых ежедневно шахматных наборов.
Формулировка ЗЛП:
|
|||
x1 ≥ 0, x2 ≥ 0. |
Подчеркнем, что каждое неравенство в системе функциональных ограничений соответствует в данном случае тому или иному производственному участку, а именно: первое - участку А, второе - участку В, третье - участку С.
Повторимся, методы решения ЗЛП мы будем рассматривать чуть позднее, а сейчас - пример задачи другого типа.
2. Задача о смесях (планирование состава продукции).
К группе задач о смесях относят задачи по отысканию наиболее дешевого набора из определенных исходных материалов, обеспечивающих получение смеси с заданными свойствами. Иными словами, получаемые смеси должны иметь в своем составе m различных компонентов в определенных количествах, а сами компоненты являются составными частями n исходных материалов.[2]
На птицеферме употребляются два вида кормов - I и II. В единице массы корма I содержатся единица вещества A, единица вещества В и единица вещества С. В единице массы корма II содержатся четыре единицы вещества А, две единицы вещества В и не содержится вещество C. В дневной рацион каждой птицы надо включить не менее единицы вещества А, не менее четырех единиц вещества В и не менее единицы вещества С. Цена единицы массы корма I составляет 3 рубля, корма II - 2 рубля.
Составьте ежедневный рацион кормления птицы так, чтобы обеспечить наиболее дешевый рацион.
Представим условие задачи в таблице 2.2.
питательные вещества |
содержание веществ в единице массы корма, ед. | требуемое
количество в смеси, ед. | |
корм I | корм II | ||
А | 1 | 4 | 1 |
В | 1 | 2 | 4 |
С | 1 | - | 1 |
цена
единицы массы корма, р |
3 | 4 |
Cформулируем
задачу линейного
Обозначим: x1 - количество корма I в дневном рационе птицы, x2 - количество корма II в дневном рационе птицы.
Формулировка
ЗЛП:
|
|||
x1 ≥ 0, x2 ≥ 0. |
3. Транспортная задача.
Под транспортной задачей понимают целый ряд задач, имеющих определенную специфическую структуру. Наиболее простыми транспортными задачами являются задачи о перевозках некоторого продукта из пунктов отправления в пункты назначения при минимальных затратах на перевозку.
Три поставщика одного и того же продукта располагают в планируемый период следующими его запасами: первый – 120 условных единиц, второй – 100 условных единиц, третий – 80 условных единиц. Этот продукт должен быть перевезен к трем потребителям, потребности которых равны 90, 90 и 120 условных единиц, соответственно.
Обычно начальные условия транспортной задачи записывают в так называемую транспортную таблицу (см. таблицу 2.3). В ячейках таблицы в левом верхнем углу записывают показатели затрат (расходы по доставке единицы продукта между соответствующими пунктами), под диагональю каждой ячейки размещается величина поставки xij (т.е. xij - количество единиц груза, которое будет перевезено от i-го поставщика j-му потребителю).
Необходимо
определить наиболее дешевый вариант
перевозок, при этом каждый поставщик
должен отправить столько груза,
сколько имеется у него в запасе,
а каждый потребитель должен получить
нужное ему количество продукции.
Сформулируем ЗЛП:
|
|||
xij
≥ 0, ( |
Если система ограничений задачи линейного программирования представлена в виде системы линейных неравенств с двумя переменными, то такая задача может быть решена геометрически. Таким образом, данный метод решения ЗЛП имеет очень узкие рамки применения.
Однако метод представляет большой интерес с точки зрения выработки наглядных представлений о сущности задач линейного программирования.[6]
Геометрический (или графический) метод предполагает последовательное выполнение ряда шагов. Ниже представлен порядок решения задачи линейного программирования на основе ее геометрической интерпретации.
1. Сформулировать ЗЛП.
2. Построить на плоскости {х1, х2} прямые, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки точных равенств.
3.
Найти полуплоскости,
4.
Найти область допустимых
5. Построить прямую c1x1 + c2x2 = h, где h - любое положительное число, желательно такое, чтобы проведенная прямая проходила через многоугольник решений.
6.
Перемещать найденную прямую
параллельно самой себе в
7. Определить координаты точки максимума (минимума) функции и вычислить значение функции в этой точке.
Далее рассмотрим пример решения ЗЛП графическим методом. Для этого воспользуемся представленной выше задачей о хоккейных клюшках и шахматных наборах.
1.
Выше уже приводилась
|
|||
x1 ≥ 0, x2 ≥ 0. |
2.
Теперь построим прямые, соответствующие
каждому из функциональных
3.
Штрихи на прямых указывают
полуплоскости, определяемые
4.
Область допустимых решений
5.
Прямая, соответствующая целевой
функции, на рисунке
6.
Прямую передвигаем
7.
Осталось вычислить координаты
точки С. Она является точкой
пересечения прямых (1) и (2). Решив
совместно уравнения этих
Таким образом, для максимизации прибыли компании следует ежедневно выпускать 24 клюшки и 4 набора. Реализация такого плана обеспечит ежедневную прибыль в размере $64.
Для
обоснования методов решения
задач линейного
Однако сначала напомним о некоторых понятиях, важных с точки зрения дальнейшего разговора.
Любые m переменных системы m линейных уравнений с n переменными (m < n) называются основными, если определитель матрицы коэффициентов при них отличен от нуля. Тогда остальные m-n переменных называются неосновными (или свободными).
Базисным решением системы m линейных уравнений c n переменными (m < n) называется всякое ее решение, в котором все неосновные переменные имеют нулевые значения.
Теорема 1. Множество всех допустимых решений системы ограничений задачи линейного программирования является выпуклым.
В
частном случае, когда в систему
ограничений входят только две переменные
x1 и x2, это множество можно
изобразить на плоскости. Так как речь
идет о допустимых решениях (x1, x2
≥ 0), то соответствующее множество будет
располагаться в первой четверти декартовой
системы координат. Это множество может
быть замкнутым (многоугольник), незамкнутым
(неограниченная многогранная область),
состоять из единственной точки и, наконец,
система ограничений-неравенств может
быть противоречивой.
Теорема 2. Если задача линейного программирования имеет оптимальное решение, то оно совпадает с одной (двумя) из угловых точек множества допустимых решений.
Из теоремы 2 можно сделать вывод о том, что единственность оптимального решения может нарушаться, причем, если решение не единственное, то таких оптимальных решений будет бесчисленное множество (все точки отрезка, соединяющего соответствующие угловые точки).
Теорема 3. Каждому допустимому базисному решению задачи линейного программирования соответствует угловая точка области допустимых решений, и наоборот.
Следствием из теорем 2 и 3 является утверждение о том, что оптимальное решение (оптимальные решения) задачи линейного программирования, заданной (или приведенной) ограничениями-уравнениями, совпадает с допустимым базисным решением (допустимыми базисными решениями) системы ограничений.
Таким образом, оптимальное решение ЗЛП следует искать среди конечного числа допустимых базисных решений.
Методы и модели линейного программирования широко применяются при оптимизации процессов во всех отраслях народного хозяйства: при разработке производственной программы предприятия, распределении ее по исполнителям, при размещении заказов между исполнителями и по временным интервалам, при определении наилучшего ассортимента выпускаемой продукции, в задачах перспективного, текущего и оперативного планирования и управления; при планировании грузопотоков, определении плана товарооборота и его распределении; в задачах развития и размещения производительных сил, баз и складов систем обращения материальных ресурсов и т.д.