Автор работы: Пользователь скрыл имя, 12 Февраля 2015 в 18:18, контрольная работа
При построении эконометрической модели используются два типа данных:
данные, характеризующие совокупность различных объектов в определенный момент времени;
данные, характеризующие один объект за ряд последовательных моментов времени.
1.Экономические модели(модели временных рядов). 3
1.1 Автокорреляция уровней временного ряда. 6
1.2 Моделирование тенденции временного ряда. 9
2.Эконометрическое прогнозирование потребительского и совокупного спроса. 11
2.1 Объективная необходимость прогнозирования спроса. 14
2.2 Прогнозирование совокупного спроса. 18
2.3 Прогнозирование потребительского спроса. 19
3. Список используемой литературы. 21
Для изучения подобных зависимостей вводится понятие функции многих переменных.
Понятие функции многих переменных
Определение. Величина u называется функцией нескольких независимых переменных (x, y, z, …,t), если каждой совокупности значений этих переменных ставится в соответствие определенное значение величины u.
Если переменная является функцией от двух переменных х и у, то функциональную зависимость обозначают
z = f (x, y).
Символ f определяет здесь совокупность действий или правило для вычисления значения z по данной паре значений х и у.
Так, для функции z = x2 + 3xy
при х = 1 и у = 1 имеем z = 4,
при х = 2 и у = 3 имеем z = 22,
при х = 4 и у = 0 имеем z = 16 и т.д.
Аналогично называется величина u функцией от трех переменных x, y, z, если дано правило, как по данной тройке значений x, y и z вычислить соответствующее значение u:
u = F (x, y, z).
Здесь символ F определяет совокупность действий или правило для вычисления значения u, соответствующего данным значениям x, y и z.
Так, для функции u = xy + 2xz – 3yz
при х = 1, у = 1 и z = 1 имеем u = 0,
при х = 1, у = -2 и z = 3 имеем u = 22,
при х = 2, у = -1 и z = -2 имеем u = -16 и т.д.
Таким образом, если в силу некоторого закона каждой совокупности п чисел (x, y, z, …,t) из некоторого множества Е ставится в соответствие определенное значение переменной u, то и u называется функцией от п переменных x, y, z, …,t, определенной на множестве Е, и обозначается
u = f (x, y, z, …,t).
Переменные x, y, z, …,t называются аргументами функции, множество Е – областью определения функции.
Частным значением функции называется значение функции в некоторой точке М0 (x0, y0, z0, …,t0) и обозначается f (М0) = f (x0, y0, z0, …,t0).
Областью определения функции называется множество всех значений аргументов, которым соответствуют какие-либо действительные значения функции.
Функция двух переменных z = f (x, y) в пространстве представляется некоторой поверхностью. То есть, когда точка с координатами х, у пробегает всю область определения функции, расположенную в плоскости хОу, соответствующая пространственная точка, вообще говоря, описывает поверхность.
Функцию трех переменных u = F (x, y, z) рассматривают как функцию точки некоторого множества точек трехмерного пространства. Аналогично, функцию п переменных u = f (x, y, z, …,t) рассматривают как функцию точки некоторого п-мерного пространства.
Предел функции многих переменных
Для того чтобы дать понятие предела функции многих переменных, ограничимся случаем двух переменных х и у. По определению функция f (x, y) имеет предел в точке (х0, у0), равный числу А, обозначаемый так:
(1)
(пишут еще f (x, y)→А при (x, y)→ (х0, у0)), если она определена в некоторой окрестности точки (х0, у0), за исключением, быть может, самой этой точки и если существует предел
(2)
какова бы ни была стремящаяся к (х0, у0) последовательность точек (xk, yk).
Так же, как в случае функции одной переменной, можно ввести другое эквивалентное определение предела функции двух переменных: функция f имеет в точке (х0, у0) предел, равный А, если она определена в некоторой окрестности точки (х0, у0) за исключением, быть может, самой этой точки, и для любого ε > 0 найдется такое δ > 0, что
| f (x, y) – A | < ε (3)
для всех (x, y), удовлетворяющих неравенствам
0 < < δ. (4)
Это определение, в свою очередь, эквивалентно следующему: для любого ε > 0 найдется δ-окрестность точки (х0, у0) такая, что для всех (x, y) из этой окрестности, отличных от (х0, у0), выполняется неравенство (3).
Так как координаты произвольной точки (x, y) окрестности точки (х0, у0) можно записать в виде х = х0 + Δх, у = у0 + Δу, то равенство (1) эквивалентно следующему равенству:
Рассмотрим некоторую функции, заданную в окрестности точки (х0, у0), кроме, быть может, самой этой точки.
Пусть ω = (ωх, ωу) – произвольный вектор длины единица (|ω|2 = ωх2 + ωу2 = 1) и t > 0 – скаляр. Точки вида
(х0 + tωх, y0 + tωу) (0 < t)
образуют луч, выходящий из (х0, у0) в направлении вектора ω. Для каждого ω можно рассматривать функцию
f (х0 + tωх, y0 + tωу) (0 < t < δ)
от скалярной переменной t, где δ – достаточно малое число.
Предел этой функции (одной переменной t)
f (х0 + tωх, y0 + tωу),
если он существует, естественно называть пределом f в точке (х0, у0) по направлению ω.
Пример 1. Функции
определены на плоскости (x, y) за исключением точки х0 = 0, у0 = 0. Имеем (учесть, что и ):
Отсюда
(для ε > 0 полагаем δ = ε/2 и тогда | f (x, y)| < ε, если < δ).
Далее, считая, что k – постоянная, имеем для y = kx равенство
из которого видно, что предел φ в точке (0, 0) по разным направлениям вообще различен (единичный вектор луча y = kx, х > 0, имеет вид
).
Пример 2. Рассмотрим в R2 функцию
(х4 + у2 ≠ 0).
Данная функция в точке (0, 0) на любой прямой y = kx, проходящей через начало координат, имеет предел, равный нулю:
при х → 0.
Однако эта функция не имеет предела в точки (0, 0), ибо при у = х2
и
Будем писать , если функция f определена в некоторой окрестности точки (х0, у0), за исключением, быть может, самой точки (х0, у0) и для всякого N > 0 найдется δ > 0 такое, что
| f (x, y)| > N,
коль скоро 0 < < δ.
Можно также говорить о пределе f, когда х, у → ∞:
(5)
Например, в случае конечного числа А равенство (5) надо понимать в том смысле, что для всякого ε > 0 найдется такое N > 0, что для всех х, у, для которых |x| > N, |y| > N, функция f определена и имеет место неравенство
| f (x, y) – А| < ε.
Справедливы равенства
(6)
(7)
(8)
где может быть х → ∞, у → ∞. При этом, как обычно, пределы (конечные) в их левых частях существуют, если существуют пределы f и φ.
Докажем для примера (7).
Пусть (xk, yk) → (х0, у0) ((xk, yk) ≠ (х0, у0)); тогда
(9)
Таким образом, предел в левой части (9) существует и равен правой части (9), а так как последовательность (xk, yk) стремится к (х0, у0) по любому закону, то этот предел равен пределу функции f (x, y)∙ φ (x, y) в точке (х0, у0).
Теорема. если функция f (x, y) имеет предел, не равный нулю в точке (х0, у0), т.е.
то существует δ > 0 такое, что для всех х, у, удовлетворяющих неравенствам
0 < < δ, (10)
она удовлетворяет неравенству
(12)
Поэтому для таких (x, y)
т.е. имеет место неравенство (11). Из неравенства (12) для указанных (x, y) следует откуда при A > 0 и при
A < 0 (сохранение знака).
По определению функция f(x) = f (x1, …, xn) = A имеет предел в точке
x0 = , равный числу А, обозначаемый так:
(пишут еще f(x) → A (x → x0)), если она определена на некоторой окрестности точки x0, за исключением, быть может, ее самой, и если существует предел
какова бы ни была стремящаяся к x0 последовательность точек хk из указанной окрестности (k = 1, 2, ...), отличных от x0.
Другое эквивалентное определение заключается в следующем: функция f имеет в точке x0 предел, равный А, если она определена в некоторой окрестности точки x0, за исключением, быть может, ее самой, и для любого ε > 0 найдется такое δ > 0, что
(13)
для всех х, удовлетворяющих неравенствам
0 < |x – x0| < δ.
Это определение в свою очередь эквивалентно следующему: для любого ε > 0 найдется окрестность U (x0) точки x0 такая, что для всех х U(x0), х ≠ x0, выполняется неравенство (13).
Очевидно, что если число А есть предел f(x) в x0, то А есть предел функции f(x0 + h) от h в нулевой точке:
и наоборот.
Рассмотрим некоторую функцию f, заданную во всех точках окрестности точки x0, кроме, быть может, точки x0; пусть ω = (ω1, ..., ωп) – произвольный вектор длины единица (|ω| = 1) и t > 0 – скаляр. Точки вида x0 + tω (0 < t) образуют выходящий из x0 луч в направлении вектора ω. Для каждого ω можно рассматривать функцию
(0 < t < δω)
от скалярной переменной t, где δω есть число, зависящее от ω. Предел этой функции (от одной переменной t)
Источники:
1. Бугров Я.С., Никольский С.М. Высшая математика: Учебник для вузов. Том 2: Дифференциальное и интегральное исчисление. Москва: Дрофа, 2004 год, 512 с.
2. Кремер Н.Ш., Путко Б.А., Тришин И.М., Фридма М.Н. Высшая математика для экономистов. Москва: Юнити, 2000 год, 271 с.
если он существует, естественно называть пределом f в точке x0 по направлению вектора ω.
Будем писать , если функция f определена в некоторой окрестности x0, за исключением, быть может, x0, и для всякого N > 0 найдется δ > 0 такое, что |f(x)| > N, коль скоро 0 < |x – x0| < δ.
Можно говорить о пределе f, когда х → ∞:
(14)
Например, в случае конечного числа А равенство (14) надо понимать в том смысле, что для всякого ε > 0 можно указать такое N > 0, что для точек х, для которых |x| > N, функция f определена и имеет место неравенство .
Итак, предел функции f(x) = f(x1, ..., хп) от п переменных определяется по аналогии так же, как для функции от двух переменных.
Таким образом, перейдем к определению предела функции нескольких переменных.
Число А называется пределом функции f(M) при М → М0, если для любого числа ε > 0 всегда найдется такое число δ > 0, что для любых точек М, отличных от М0 и удовлетворяющих условию | ММ0 | < δ, будет иметь место неравенство | f(M) – А | < ε.
Предел обозначают В случае функции двух переменных
Теоремы о пределах. Если функции f1(M) и f2(M) при М → М0 стремятся каждая к конечному пределу, то:
а)
б)
в)
Пример 1. Найти предел функции:
Решение. Преобразуем предел следующим образом:
Пусть y = kx, тогда
Пример 2. Найти предел функции:
Решение. Воспользуемся первым замечательным пределом Тогда
Пример 3. Найти предел функции:
Решение. Воспользуемся вторым замечательным пределом Тогда