Автор работы: Пользователь скрыл имя, 15 Декабря 2011 в 10:56, реферат
С середины XX в. в самых различных областях человеческой деятельности стали широко применять математические методы и ЭВМ. Возникли такие новые дисциплины, как «математическая экономика», «математическая химия», «математическая лингвистика» и т. д., изучающие математические модели соответствующих объектов и явлений, а также методы исследования этих моделей.
a11 = 1,2 р., a12 = 1,6 р., a21 = 0,8 р., a22 = 1 р.
Как нужно спланировать перевозки, чтобы их стоимость была минимальной?
Придадим задаче математическую формулировку. Обозначим через x1 и x2 количество муки, которое надо перевезти с первого склада на первый и второй заводы, а через x3 и x4 — со второго склада на первый и второй заводы соответственно. Тогда:
x1 + x2 = 50, x3 + x4 = 70, x1 + x3 = 40, x2 + x4 = 80. (1)
Общая стоимость всех перевозок определяется формулой
f = 1,2x1 + 1,6x2 + 0,8x3 + x4.
С математической точки зрения, задача заключается в том, чтобы найти четыре числа x1, x2, x3 и x4, удовлетворяющие всем заданным условиям и дающим минимум функции f. Решим систему уравнений (1) относительно xi (i = 1, 2, 3, 4) методом исключения неизвестных. Получим, что
x1 = x4 – 30, x2 = 80 – x4, x3 = 70 – x4, (2)
а x4 не может быть определено однозначно. Так как xi і0 (i = 1, 2, 3, 4), то из уравнений (2) следует, что 30Јx4Ј70. Подставляя выражение для x1, x2, x3 в формулу для f, получим
f = 148 – 0,2x4.
Легко видеть, что
минимум этой функции достигается
при максимально возможном
Задача о радиоактивном распаде.
Пусть N(0) — исходное количество атомов радиоактивного вещества, а N(t) — количество нераспавшихся атомов в момент времени t. Экспериментально установлено, что скорость изменения количества этих атомов N'(t) пропорциональна N(t), то есть N'(t)=–lN(t), l>0 — константа радиоактивности данного вещества. В школьном курсе математического анализа показано, что решение этого дифференциального уравнения имеет вид N(t) = N(0)e–lt. Время T, за которое число исходных атомов уменьшилось вдвое, называется периодом полураспада, и является важной характеристикой радиоактивности вещества. Для определения T надо положить в формуле Тогда Например, для радона l = 2,084·10–6, и следовательно, T = 3,15 сут.
Задача о коммивояжере.
Коммивояжеру, живущему в городе A1, надо посетить города A2, A3 и A4, причем каждый
город точно один раз, и затем вернуться обратно в A1. Известно, что все города попарно
соединены между собой дорогами, причем длины дорог bij между городами Ai и Aj (i, j = 1, 2, 3, 4) таковы:
b12 = 30, b14 = 20, b23 = 50, b24 = 40, b13 = 70, b34 = 60.
Надо определить порядок посещения городов, при котором длина соответствующего
пути минимальна.
Изобразим каждый город точкой на плоскости и пометим ее соответствующей меткой Ai (i = 1, 2, 3, 4). Соединим эти точки отрезками прямых: они будут изображать дороги между городами. Для каждой «дороги» укажем ее протяженность в километрах (рис. 2). Получился граф — математический объект, состоящий из некоторого множества точек на плоскости (называемых вершинами) и некоторого множества линий, соединяющих эти точки (называемых ребрами). Более того, этот граф меченый, так как его вершинам и ребрам приписаны некоторые метки — числа (ребрам) или символы (вершинам). Циклом на графе называется последовательность вершин V1, V2, ..., Vk, V1 такая, что вершины V1, ..., Vk — различны, а любая пара вершин Vi, Vi+1 (i = 1, ..., k – 1) и пара V1, Vk соединены ребром. Таким образом, рассматриваемая задача заключается в отыскании такого цикла на графе, проходящего через все четыре вершины, для которого сумма всех весов ребер минимальна. Найдем перебором все различные циклы, проходящие через четыре вершины и начинающиеся в A1:
1) A1, A4, A3, A2, A1;
2) A1, A3, A2, A4, A1;
3) A1, A3, A4, A2, A1.
Найдем теперь длины этих циклов (в км): L1 = 160, L2 = 180, L3 = 200. Итак, маршрут наименьшей длины — это первый.
Заметим, что если в графе n вершин и все вершины попарно соединены между собой ребрами (такой граф называется полным), то число циклов, проходящих через все вершины, равно Следовательно, в нашем случае имеется ровно три цикла.
Задача о нахождении связи между структурой и свойствами веществ.
Рассмотрим несколько химических соединений, называемых нормальными алканами. Они состоят из n атомов углерода и n + 2 атомов водорода (n = 1, 2 ...), связанных между собой так, как показано на рисунке 3 для n = 3. Пусть известны экспериментальные значения температур кипения этих соединений:
yэ(3) = – 42°, yэ(4) = 0°, yэ(5) = 28°, yэ(6) = 69°.
Требуется найти
приближенную зависимость между
температурой кипения и числом n
для этих соединений. Предположим, что эта зависимость имеет вид
y » an + b,
где a, b — константы, подлежащие определению. Для нахождения a и b подставим в эту формулу последовательно n = 3, 4, 5, 6 и соответствующие значения температур кипения. Имеем:
– 42 » 3a + b, 0 » 4a + b, 28 » 5a + b, 69 » 6a + b.
Для определения наилучших a и b существует много разных методов. Воспользуемся наиболее простым из них. Выразим b через a из этих уравнений:
b » – 42 – 3a, b » – 4a, b » 28 – 5a, b » 69 – 6a.
Возьмем в качестве искомого b среднее арифметическое этих значений, то есть положим b » 16 – 4,5a. Подставим в исходную систему уравнений это значение b и, вычисляя a, получим для a следующие значения: a»37, a»28, a»28, a»36. Возьмем в качестве искомого a среднее значение этих чисел, то есть положим a»34. Итак, искомое уравнение имеет вид
y » 34n – 139.
Проверим точность модели на исходных четырех соединениях, для чего вычислим температуры кипения по полученной формуле:
yр(3) = – 37°, yр(4) = – 3°, yр(5) = 31°, yр(6) = 65°.
Таким образом, ошибка расчетов данного свойства для этих соединений не превышает 5°. Используем полученное уравнение для расчета температуры кипения соединения с n = 7, не входящего в исходное множество, для чего подставим в это уравнение n = 7: yр(7) = 99°. Результат получился довольно точный: известно, что экспериментальное значение температуры кипения yэ(7) = 98°.
Задача об определении надежности электрической цепи.
Здесь мы рассмотрим пример вероятностной модели. Сначала приведем некоторые сведения из теории вероятностей — математической дисциплины, изучающей закономерности случайных явлений, наблюдаемых при многократном повторении опыта. Назовем случайным событием A возможный исход некоторого опыта. События A1, ..., Ak образуют полную группу, если в результате опыта обязательно происходит одно из них. События называются несовместными, если они не могут произойти одновременно в одном опыте. Пусть при n-кратном повторении опыта событие A произошло m раз. Частотой события A называется число W = . Очевидно, что значение W нельзя предсказать точно до проведения серии из n опытов. Однако природа случайных событий такова, что на практике иногда наблюдается следующий эффект: при увеличении числа опытов значение практически перестает быть случайным и стабилизируется около некоторого
неслучайного числа P(A), называемого вероятностью события A. Для невозможного события (которое никогда не происходит в опыте) P(A)=0, а для достоверного события (которое всегда происходит в опыте) P(A)=1. Если события A1, ..., Ak образуют полную группу несовместимых событий, то P(A1)+...+P(Ak)=1.
Пусть, например, опыт
состоит в подбрасывании
Суммой событий A и B называется событие A + B, состоящее в том, что в опыте происходит хотя бы одно из них. Произведением событий A и B называется событие AB, состоящее в одновременном появлении этих событий. Для независимых событий A и B верны формулы
P(AB) = P(A)•P(B), P(A + B) = P(A) + P(B).
Рассмотрим теперь
следующую задачу. Предположим, что
в электрическую цепь
Так как элементы включены последовательно, то тока в цепи не будет (событие A), если откажет хотя бы один из элементов. Пусть Ai — событие, заключающееся в том, что i-й элемент работает (i = 1, 2, 3). Тогда P(A1) = 0,9, P(A2) = 0,85, P(A3) = 0,8. Очевидно, что A1A2A3 — событие, заключающееся в том, что одновременно работают все три элемента, и
P(A1A2A3) = P(A1)•P(A2)•P(A3) = 0,612.
Тогда P(A) + P(A1A2A3) = 1, поэтому P(A) = 0,388 < 0,4. Следовательно, цепь является надежной.
В заключение отметим,
что приведенные примеры
Классификация математических моделей (ТО - технический объект)
Виды математических
моделей технических объектов
По форме представления
ММ
По характеру отображаемых свойств ТО
По степени абстрагирования
По способу получения ММ
Инвариантные
Функциональные
ММ микроуровня(с распределенными параметрами)
Теоретические
Алгоритмические
Структурные
ММ макроуровня (со средоточенными параметрами
Экспериментальные факторные
Аналитические
ММ метауровня
Графические (схемные)
Структура модели - это
упорядоченное множество
К математическим моделям предъявляются требования адекватности, экономичности, универсальности. Эти требования противоречивы.
В зависимости от степени абстрагирования при описании физических свойств технической системы различают три основных иерархических уровня: верхний или метауровень, средний или макроуровень, нижний или микроуровень.
Метауровень соответствует начальным стадиям проектирования, на которых осуществляется научно-техничекский1 поиск и прогнозирование, разработка концепции и технического решения, разработка технического предложения. Для построения математических моделей метауровня используют методы морфологического синтеза, теории графов, математической логики, теории автоматического управления, теории массового обслуживания, теории конечных автоматов.
На макроуровне объект рассматривается как динамическая система с сосредоточенными
параметрами.
Математические модели
На микроуровне объект представляется как сплошная Среда с распределенными параметрами. Для описания процессов функционирования таких объектов используют дифференциальные уравнения в частных производных. На микроуровне проектируют неделимые по функциональному признаку элементы технической системы, называемые базовыми элементами. При этом базовый элемент рассматривается как система, состоящая из множества однотипных функциональных элементов одной и той же физической природы, взаимодействующих между собой и находящихся под воздействием внешней Среды и других элементов технического объекта, являющихся внешней средой по отношению к базовому элементу.
По форме представления математических моделей различают инвариантную, алгоритмическую, аналитическую и графическую модели объекта проектирования.
В инвариантной форме математическая модель представляется системой уравнений вне связи с методом решения этих уравнений.
В алгоритмической форме соотношения модели связаны с выбранным численным методом решения и записаны в виде алгоритма - последовательности вычислений. Среди алгоритмических моделей выделяют имитационные , модели предназначенные для имитации физических и информационных процессов, протекающих в объекте при его функционировании под воздействием различных факторов внешней среды.
Информация о работе Классификация математических моделей (ТО - технический объект)