Автор работы: Пользователь скрыл имя, 29 Октября 2010 в 01:38, Не определен
Курсовая работа
Рассмотрим особенности постановки задачи прямого стохастического факторного анализа. Если в случае прямого детерминированного факторного анализа исходные данные для анализа имеются в форме конкретных чисел, то в случае прямого стохастического факторного анализа заданы выборкой (временной или поперечной). Решения задач стохастического факторного анализа требуют: глубокого экономического исследования для выявления основных факторов, влияющих на результативный показатель; подбора вида регрессии, который бы наилучшим образом отражал действительную связь изучаемого показателя с набором факторов; разработки метода, позволяющего определить влияние каждого фактора на результативный показатель. Если результаты прямого детерминированного анализа должны получиться точными и однозначными, то стохастического - с некоторой вероятностью (надежностью), которую следует оценить.
Примером
прямого стохастического
В экономическом анализе, кроме задач, сводящихся к детализации показателя, к разбивке его на составляющие части существует группа задач, где требуется увязать ряд экономических характеристик в комплексе, т. е, построить функцию содержащую в себе основное качество всех рассматриваемых экономических показателей - аргументов, т. е. задач синтеза. В данном случае ставится обратная задача (относительно задачи прямого факторного анализа) - задача объединения ряда показателей в комплекс.
Пусть
имеется набор показателей х1,х
Для детального исследования экономических показателей или процессов необходимо проводить не только одноступенчатый, но и цепной факторный анализ: статический (пространственный) и динамический (пространственный и во времени)
Пусть
исследуется экономический
из методов факторного анализа. Если xl,
x2, ..., хn
- функции более первичных факторов,
то для анализа у
надо объяснить поведение х1 х2,…,
хn; для этого проводят даль-нейшую
детализацию:
х1=l1(z1,z2,…zm);
х2=l2(л1, л 2,… л k);
……………………..
хn=ln(p1, p 2,… p e);
Детализация факторов может быть продолжена и дальше. Закончив ее, решают обратную задачу факторного анализа, синтезируя результаты исследования для характеристики результативного показателя у. Такой метод исследования называется цепным статическим методом факторного анализа.
При применении цепного динамического факторного анализа для полного изучения поведения результативного показателя недостаточно его статического значения; факторный анализ показателя проводится на различных интервалах дробления времени, на которых исследуется показатель.
Экономический факторный анализ может быть направлен на выяснение действия факторов, формирующих результаты хозяйственной деятельности, по различным источникам пространственного или временного происхождения.
Анализ динамических (временных) рядов показателей хозяйственной деятельности, расщепление уровня ряда на его составляющие (основную линию развития - тренд, сезонную, или периодическую составляющую, циклическую составляющую, связанную с воспроизводственными явлениями, случайную составляющую) - задача временного факторного анализа.
Классификация
задач факторного анализа упорядочивает
постановку многих экономических задач,
позволяет выявить общие закономерности
в их решении» При исследовании сложных
экономических процессов возможна комбинация
постановки задач, если последние не относятся
целиком к какому-либо типу, указанному
в классификации.
3.
1. Детерминированный факторный
В основе детерминированного моделирования факторной системы лежит возможность построения тождественного преобразования для исходной формулы экономического показателя по теоретически предполагаемым прямым связям переднего с другими показателями-факторами. Детерминированное моделирование факторных систем - это простое и эффективное средство формализации связи экономических показателей; оно служит основой для количественной оценки роли отдельных факторов в динамике изменения обобщающего показателя.
Детерминированное моделирование факторных систем ограничено длиной факторного поля прямых связей. При недостаточном уровне знаний о природе прямых связей того или иного показателя хозяйственной деятельности часто необходим иной подход к познанию объективной действительности. Размах количественных изменений экономических показателей можно выяснить только стохастическим анализом массовых эмпирических данных.
При детерминированном факторном анализе модель изучаемого явления не изменяется по хозяйственным объектам и периодам (так как соотношения соответствующих основных категорий стабильны). При необходимости сравнения результатов деятельности отдельных хозяйств или одного хозяйства в отдельные периоды может возникать лишь вопрос о сопоставимости выявленных на основе модели количественных аналитических результатов.
3.1.1.
Модели детерминированного
Детерминированный
факторный анализ представляет собой
методику исследования влияния факторов,
связь которых с результативным показателем
носит функциональный характер, т.е. может
быть выражен математической зависимостью.
Детерминированные модели могут быть
разного типа: аддитивные, мультипликативные,
кратные, смешанные.
Аддитивные модели.
Аддитивные модели представляют собой алгебраическую сумму показателей и имеют следующую математическую интерпретацию:
В качестве примера можно привести балансовую модель товарного обеспечения:
где Np - общий объём реализации;
Nзап.1 - запасы товара на начало периода;
Nn - объём поступления;
Nвыб - прочее выбытие товаров;
Nзап.2 - запасы товаров на конец анализируемого периода.
Мультипликативная модель.
Мультипликативная модель представляет собой произведение факторов.
Примером
мультипликативной модели является
двухфакторная модель объёма реализации:
где Ч - среднесписочная численность работников;
Кратные модели представляют собой отношение факторов и имеют вид:
где Z - совокупный показатель.
Например:
где - срок оборачиваемости товаров (в днях);
- средний запас товаров;
nр - однодневный объём реализации.
Логарифмический способ.
Логарифмический способ применим к кратным и мультипликативным моделям. Он основан на логарифмировании отклонения отчётного и базисного значений результативного признака, равного отношению соответствующих произведений факторов, так как изменение показателей может быть оценено с помощью как абсолютных, так и относительных показателей.
Интегральный способ.
Интегральный способ позволяет достичь полного разложения результативного показателя по факторам и носит универсальный характер, т.е. применим к мультипликативным, кратным и смешанным моделям.
Операция вычисления определённого интеграла по заданной подынтегральной функции и заданному интервалу интегрирования выполняется на ПЭВМ.
Метод цепных подстановок.
Метод цепных подстановок заключается в определении ряда промежуточных значений результативного показателя путем последовательной замены базисных значений факторов на отчетные. Данный способ основан на элиминировании. Элиминировать - значит устранить, исключить воздействие всех факторов на величину результативного показателя, кроме одного. Предполагается, что все факторы изменяются независимо друг от друга, т.е. сначала изменяется один фактор, а все остальные остаются без изменения, потом изменяются два при неизменности остальных и т.д.
В общем виде применение способа цепных постановок можно описать следующим образом:
Преимущества данного способа: универсальность применения; простота расчетов.
Недостаток метода состоит в том, что, в зависимости от выбранного порядка замены факторов, результаты факторного разложения имеют разные значения. Это связано с тем, что в результате применения этого метода образуется некий неразложимый остаток, который прибавляется к величине влияния последнего фактора. На практике точностью оценки факторов пренебрегают, выдвигая на первый план относительную значимость влияния того или иного фактора. Однако существуют определенные правила, определяющие последовательность подстановки:
- при наличии в факторной модели количественных и качественных показателей в первую очередь рассматривается изменение количественных факторов;
- если модель представлена несколькими количественными и качественными показателями, то в первую очередь определяется влияние факторов первого порядка, затем второго и т.д.
Под количественным факторами при анализе понимают те, которые выражают количественную определенность явлений и могут быть получены путем непосредственного учета (количество рабочих, станков, сырья и т.д.).
Качественные факторы определяют внутренние качества, признаки и особенности изучаемых явлений (производительность труда, качество продукции, средняя продолжительность рабочего дня и т.д.).
Метод абсолютных разниц.
Метод абсолютных разниц является модификацией способа цепной подстановки. Изменение результативного показателя за счет каждого фактора определяется как произведение абсолютного прироста исследуемого фактора на базисную величину факторов, которые находятся справа от него и отчетную величину факторов, расположенных слева от него в модели.
Метод относительных разниц.
Метод относительных разниц также является одной из модификаций способа цепной подстановки. Применяется для измерения влияния факторов на прирост результативного показателя в мультипликативных моделях. Он используется в случаях, когда исходные данные содержат определенные ранее относительные отклонения факторных показателей в процентах.
Для мультипликативных моделей типа у = а. в . с методика анализа следующая: