Венгерский метод решения задач

Автор работы: Пользователь скрыл имя, 01 Октября 2015 в 11:05, реферат

Описание работы

Венгерский алгоритм — алгоритм оптимизации, решающий задачу о назначениях за полиномиальное время. Он был разработан и опубликован Харолдом Куном в 1955 году. Автор дал ему имя «венгерский метод» в связи с тем, что алгоритм в значительной степени основан на более ранних работах двух венгерских математиков Кёнига и Эгервари.

Содержание работы

Введение
Описание алгоритма венгерского метода
Венгерский метод для транспортной задачи
Обоснование венгерского метода
Примеры

Файлы: 1 файл

реферат.docx

— 116.15 Кб (Скачать файл)

Содержание

 

Введение

Описание алгоритма венгерского метода

Венгерский метод для транспортной задачи

Обоснование венгерского метода

Примеры

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Венгерский алгоритм — алгоритм оптимизации, решающий задачу о назначениях за полиномиальное время. Он был разработан и опубликован Харолдом Куном в 1955 году. Автор дал ему имя «венгерский метод» в связи с тем, что алгоритм в значительной степени основан на более ранних работах двух венгерских математиков Кёнига и Эгервари.

Джеймс Манкрес в 1957 году заметил, что алгоритм является (строго) полиномиальным. С этого времени алгоритм известен также как алгоритм Куна — Манкреса или алгоритм Манкреса решения задачи о назначениях. Временная сложность оригинального алгоритма была  , однако Эдмондс  и Карп (а также Томидзава независимо от них) показали, что его можно модифицировать так, чтобы достичь времени выполнения  . Форд и Фалкерсон распространили метод на общие транспортные задачи. В 2006 году было обнаружено, что Якоби нашёл решение задачи о назначениях в XIX веке и опубликовал его в 1890 году на латыни.

Задача о назначениях является частным случаем классической транс-портной задачи и, как следствие, является задачей транспортного типа.  
Транспортная задача – задача о наиболее экономном плане перевозок од-нородного или взаимозаменяемого продукта из пункта производства (станций отправления), в пункты потребления (станции назначения) – является важней-шей частной задачей линейного программирования, имеющей обширные прак-тические приложения не только к проблемам транспорта. 
 Применительно к задаче о назначениях симплексный метод не эффекти-вен, так как любое ее допустимое базисное решение является вырожденным. Специфические особенности задачи о назначениях позволили разработать эф-фективный метод ее решения, известный как венгерский метод.

 

 

 

 

 

 

Описание алгоритма венгерского метода

Алгоритм состоит из предварительного этапа и не более чем (n-2) последовательно проводимых итераций. Каждая итерация связана с эквивалентными преобразованиями матрицы, полученной в результате проведения предыдущей итерации, и с выбором максимального числа независимых нулей. Окончательным результатом итерации является увеличение числа независимых нулей на единицу. Как только количество независимых нулей станет равным n, проблему выбора оказывается решенной, а оптимальный вариант назначений определяется позициями независимых нулей в последней матрице.

Предварительный этап. Разыскивают максимальный элемент в j – м столбце и все элементы этого столбца последовательно вычитают из максимального. Эту операцию проделывают над всеми столбцами матрицы С. В результате образуется матрица с неотрицательными элементами, в каждом столбце которой имеется, по крайней мере, один нуль.

Далее рассматривают i – ю строку полученной матрицы, разыскивают ее минимальный элемент ai и из каждого элемента этой строки вычитают минимальный. Эту процедуру повторяют со всеми строками. В результате получим матрицу С0 (С0 ~ C), в каждой строке и столбце которой имеется, по крайней мере, один нуль. Описанный процесс преобразования С в С0 называетсяприведением матрицы.

Находим произвольный нуль в первом столбце и отмечаем его звездочкой. Затем просматриваем второй столбец, и если в нем есть нуль, расположенный в строке, где нет нуля со звездочкой, то отмечаем его звездочкой. Аналогично просматриваем один за другим все столбцы матрицы С0 и отмечаем, если возможно, следующие нули знаком “*”. Очевидно, что нули матрицы С0, отмеченные звездочкой, являются независимыми. На этом предварительный этап заканчивается.

(k+1)-ая итерация. Допустим, что k–я итерация уже проведена и в результате получена матрица Сk. Если в ней имеется ровно n нулей со звездочкой, то процесс решения заканчивается. В противном случае переходим к (k+1) – й итерации.

Каждая итерация начинается первым и заканчивается вторым этапом. Между ними может несколько раз проводиться пара этапов: третий – первый. Перед началом итерации знаком “+” выделяют столбцы матрицы Сk, которые содержат нули со звездочками.

Первый этап. Просматривают невыделенные столбцы Сk. Если среди них не окажется нулевых элементов, то переходят к третьему этапу. Если же невыделенный нуль матрицы Сkобнаружен, то возможен один из двух случаев: 1) строка, содержащая невыделенный нуль, содержит также и нуль со звездочкой; 2) эта строка не содержит нуля со звездочкой.

Во втором случае переходим сразу ко второму этапу, отметив этот нуль штрихом.

В первом случае этот невыделенный нуль отмечают штрихом и выделяют строку, в которой он содержится (знаком “+” справа от строки). Просматривают эту строку, находят нуль со звездочкой и уничтожают знак “+” выделения столбца, в котором содержится данный нуль.

Далее просматривают этот столбец (который уже стал невыделенным) и отыскивают в нем невыделенный нуль (или нули), в котором он находится. Этот нуль отмечают штрихом и выделяют строку, содержащую такой нуль (или нули). Затем просматривают эту строку, отыскивая в ней нуль со звездочкой.

Этот процесс за конечное число шагов заканчивается одним из следующих исходов:

1) все нули матрицы Сk выделены, т.е. находятся в выделенных строках или столбцах. При этом переходят к третьему этапу;

2) имеется такой невыделенный  нуль в строке, где нет нуля  со звездочкой. Тогда переходят ко второму этапу, отметив этот нуль штрихом.

Второй этап. На этом этапе строят следующую цепочку из нулей матрицы Сk: исходный нуль со штрихом, нуль со звездочкой, расположенный в одном столбце с первым нулем со штрихом в одной строке с предшествующим нулем со звездочкой и т.д. Итак, цепочка образуется передвижением от 0’ к 0* по столбцу, от 0* к 0’ по строке и т.д.

Можно доказать, что описанный алгоритм построения цепочки однозначен и конечен, при этом цепочка всегда начинается и заканчивается нулем со штрихом.

Далее над элементами цепочки, стоящими на нечетных местах ( 0’ ) –, ставим звездочки, уничтожая их над четными элементами ( 0* ). Затем уничтожаем все штрихи над элементами Сk и знаки выделения “+”. Количество независимых нулей будет увеличено на единицу. На этом (k+1) –я итерация закончена.

Третий этап. К этому этапу переходят после первого, если все нули матрицы Сk выделены. В таком случае среди невыделенных элементов Сk выбирают минимальный и обозначают его h(h>0). Далее вычитают h из всех элементов матрицы Сk, расположенных в невыделенных строках и прибавляют ко всем элементам, расположенным в выделенных столбцах. В результате получают новую матрицу С'k, эквивалентную Сk. Заметим, что при таком

преобразовании, все нули со звездочкой матрицы Сk остаются нулями и в С'k, кроме того, в ней появляются новые невыделенные нули. Поэтому переходят вновь к первому этапу. Завершив первый этап, в зависимости от его результата либо переходят ко второму этапу, либо вновь возвращаются к третьему этапу.

После конечного числа повторений очередной первый этап обязательно закончится переходом на второй этап. После его выполнения количество независимых нулей увеличится на единицу и(k+1) – я итерация будет закончена.

Пример 3.4. Решить задачу о назначениях с матрицей

При решении задачи используем следующие обозначения:

Знак выделения “+”, подлежащий уничтожению, обводим кружком; цепочку, как и ранее, указываем стрелками.

Предварительный этап. Отыскиваем максимальный элемент первого столбца – 4. Вычитаем из него все элементы этого столбца. Аналогично для получения второго, третьего, четвертого и пятого столбцов новой матрицы вычитаем все элементы этих столбцов от п’яти, трех, двух и трех соответственно. Получим матрицу С'(C'~C). Так как в каждой строке С' есть нуль, то С' = С0и процесс приведения матрицы заканчивается. Далее ищем и отмечаем знаком “*” независимые нули в С0, начиная с первой строки.

Первая итерация. Первый этап. Выделяем знаком “+” первый, второй, и четвертый столбцы матрицы С0, которые содержат 0*.

Просматриваем невыделенный третий столбец, находим в нем невыделенный нуль С23 = 0, отмечаем его штрихом и выделяем знаком “+” вторую строку. Просматриваем эту строку, находим в ней элемент С22 = 0* и уничтожаем знак выделения второго столбца, содержащего 0*. Затем просматриваем второй столбец – в нем нет невыделенных элементов. Переходим к последнему невыделенному столбцу (пятому), ищем в нем невыделенные нули. Поскольку невыделенных нулей нет, то переходим к третьему этапу.

Третий этап. Находим минимальный элемент в невыделенной части матрицы С0 (т.е. элементы, которые лежат в столбцах и строках, не отмеченных знаком “+”). Он равен h = 1.

Вычтем h = 1 из всех элементов невыделенных строк (т.е. всех, кроме второго) и прибавим ко всем элементам выделенных столбцов (первого и четвертого). Получим матрицу С'1 и перейдем к первому этапу.

Первый этап. Перед его началом вновь выделяем знаком “+” первый, второй и четвертый столбцы. Просматриваем невыделенный третий столбец, находим в нем невыделенный нуль С23 = 0, отмечаем его знаком штрих. Поскольку во второй строке есть 0* (элемент С22), то выделяем знаком “+” вторую строку, далее уничтожаем знак выделения второго столбца, где лежит 0*. Потом просмотрим второй столбец, находим в нем невыделенный нуль С12 = 0, отмечаем его знаком штрих. Поскольку в первой строке есть нуль со звездочкой С14 = 0*, то выделяем его знаком “+”, и уничтожаем знак выделения четвертого столбца, где находился этот знак 0*. Затем пересматриваем четвертый столбец и находим в нем невыделенный нуль С54 = 0. Так как в строке, где он находится, нет нуля со звездочкой, то отметив этот 0 штрихом, переходим ко второму этапу.

Второй этап. Начиная с элемента с54 = 0’, строим цепочку, двигаясь от него по столбцу. Находим нуль со звездочкой с14 = 0*, далее от него движемся вдоль первой строки и находим 0’(с12), от этого элемента движемся вдоль первого столбца к с22 = 0*, в конечном итоге, двигаясь от с22 = 0* вдоль второй строки приходим к исходному с23 = 0’. Таким образом, цепочка построена: 0’54-0*14-0’12-0*22-0’23. Заменяем штрих на звездочку и уничтожаем звездочки над четными элементами цепочки, а также все знаки выделения столбцов и строк. На этом первая итерация заканчивается. В результате число независимых нулей увеличилось на единицу. Поскольку следующие итерации выполняются аналогично, то приведем результаты их выполнения без дополнительных пояснений. После второй итерации количество независимых нулей (0*) стало равно 5 (размерности матрицы С) и поэтому алгоритм заканчивает работу. Искомые элементы назначения соответствуют позициям независимых нулей матрицы С3 (т.е.  0*).

Соответствующее значение целевой функции

Первая итерация. Первый этап                               Третий этап

 

                                   h=1

Первая итерация. Первый этап.             

 Второй этап.  

 
 


 

 
                             

 

     

 

 

 

 

 

 

   Вторая итерация.

Первый этап                                                                   Второй этап

 
 


 

 
                      

Венгерский метод для транспортной задачи

Рассмотренная выше задача о назначениях представляет собой частный случай Т-задачи, когда  . Поэтому венгерский метод, применимый для решения транспортной задачи специального вида, можно распространить на общий случай Т-задачи. [18; 59].

Пусть требуется решить Т-задачу следующего вида

минимизировать 

при условиях

Алгоритм решения Т-задачи, основанный на венгерском методе, состоит из предварительного этапа и конечного числа однотипных итераций.

В результате предварительного этапа вычисляют матрицу  , элементы которой удовлетворяют следующим условиям:

,                                   (3.3.1)

.                                    (3.3.2)

Если в условиях (3.3.1), (3.3.2) строгие равенства, то матрица Х0 является решением Т-задачи.

Матрицу, построенную в результате k-й итерации, обозначим  . Обозначим также

 .                           (3.3.3)

Величина   называется суммарной невязкой для матрицы  . Она характеризует близость   к искомому плану Т-задачи. Итерации проводятся до тех пор, пока величина   не станет равна нулю.

Описание алгоритма Венгерского метода

Информация о работе Венгерский метод решения задач