Автор работы: Пользователь скрыл имя, 03 Апреля 2011 в 17:53, реферат
Для прогнозирования объема продаж, имеющего сезонный характер, предлагается следующий алгоритм построения прогнозной модели:
1.Определяется тренд, наилучшим образом аппроксимирующий фактические данные. Существенным моментом при этом является предложение использовать полиномиальный тренд, что позволяет сократить ошибку прогнозной модели.
Ошибки
прогнозируемых объемов расходов расчитывают
по формуле:
E =A/(T*S)
Объем расходов | Сезонная компонента | Тренд | Ошибка | |
1 кв. 1999 г. | 24518 | 0,912225 | 26877,1411 | 1 |
2 кв. 1999 г. | 23778 | 0,84359167 | 28186,6227 | 1 |
3 кв. 1999 г. | 25143 | 0,913825 | 27514,0207 | 1 |
4 кв. 1999 г. | 27622 | 1,33035833 | 20762,8271 | 1 |
1 кв. 2000 г. | 26149 | 0,912225 | 28665,0771 | 1 |
2 кв. 2000 г. | 24123 | 0,84359167 | 28595,5883 | 1 |
3 кв. 2000 г. | 27580 | 0,913825 | 30180,8333 | 1 |
4 кв. 2000 г. | 30854 | 1,33035833 | 23192,2477 | 1 |
1 кв. 2001 г. | 29147 | 0,912225 | 31951,547 | 1 |
2 кв. 2001 г. | 26478 | 0,84359167 | 31387,2233 | 1 |
3 кв. 2001 г. | 30159 | 0,913825 | 33003,0367 | 1 |
4 кв. 2001 г. | 33149 | 1,33035833 | 24917,3468 | 1 |
1 кв. 2002 г. | 32451 | 0,912225 | 35573,4605 | 1 |
Можно
предположить, что величина ошибки
второго прогноза будет несколько
ниже чем первого.
3. Прогноз методом скользящей средней и экспоненциального сглаживания.
Для предсказаний значений временного ряда можно использовать более простую методику.
При расчете скользящей средней Ytnp c (m) все m значений параметра Y за m моментов времени учитываются с одинаковым весовым коэффициентом 1/m что не всегда обосновано. Для прогнозирования технико – экономических трендов момент времени, в котором наблюдалось значение параметра Y, играет решающее значение. Естественно предположить, что зависимость во временных рядах постепенно ослабевает с увеличением периода между двумя соседними точками. Так, если зависимость прогнозируемою параметра Yt представляется более сильной от значения Yt-1, чем от Yt-s то
наблюдениям временного ряда следует придавать веса, которые должны уменьшаться но мере удаления oт фиксированного момента времени t. Это обстоятельство учитывается в методе экспоненциального сглаживания. Таким образом, при вычислении .ко экспоненциальной средней используются лишь предшествующая экспоненциальная средняя и последнее наблюдение, а все предыдущие наблюдения игнорируются.
Например,
пусть необходимо дать прогноз для
t-=8 но данным следующего временного ряда:
1) методом скользящей средней для m=3, m
=4$ 2) методом экспоненциального о сглаживания
для
=0,2; 0,6.
1 кв. 1999 г. | 24518 |
2 кв. 1999 г. | 23778 |
3 кв. 1999 г. | 25143 |
4 кв. 1999 г. | 27622 |
1 кв. 2000 г. | 26149 |
2 кв. 2000 г. | 24123 |
3 кв. 2000 г. | 27580 |
4 кв. 2000 г. | 30854 |
1 кв. 2001 г. | 29147 |
2 кв. 2001 г. | 26478 |
3 кв. 2001 г. | 30159 |
4 кв. 2001 г. | 33149 |
1 кв. 2002 г. | 32451 |
Y14пр
с(3) = (30159+33149+32451)/3=31919,67
Y14пр
с (13) = (24518+23778+25143+27622+
Метод экспоненциального сглаживания
0,2 | погрешность | ||
1 кв. 1999 г. | 24518 | #Н/Д | #Н/Д |
2 кв. 1999 г. | 23778 | 23778 | #Н/Д |
3 кв. 1999 г. | 25143 | 24870 | #Н/Д |
4 кв. 1999 г. | 27622 | 27071,6 | #Н/Д |
1 кв. 2000 г. | 26149 | 26333,52 | 1851,838704 |
2 кв. 2000 г. | 24123 | 24565,1 | 2106,426154 |
3 кв. 2000 г. | 27580 | 26977,02 | 2223,149967 |
4 кв. 2000 г. | 30854 | 30078,6 | 3109,499653 |
1 кв. 2001 г. | 29147 | 29333,32 | 2886,08454 |
2 кв. 2001 г. | 26478 | 27049,06 | 2831,47259 |
3 кв. 2001 г. | 30159 | 29537,01 | 2496,160001 |
4 кв. 2001 г. | 33149 | 32426,6 | 3207,855423 |
1 кв. 2002 г. | 32451 |
0,6 | погрешность | ||
1 кв. 1999 г. | 24518 | #Н/Д | #Н/Д |
2 кв. 1999 г. | 23778 | 23778 | #Н/Д |
3 кв. 1999 г. | 25143 | 24324 | #Н/Д |
4 кв. 1999 г. | 27622 | 25643,2 | #Н/Д |
1 кв. 2000 г. | 26149 | 25845,52 | 2081,334719 |
2 кв. 2000 г. | 24123 | 25156,51 | 2167,926259 |
3 кв. 2000 г. | 27580 | 26125,91 | 1741,283327 |
4 кв. 2000 г. | 30854 | 28017,14 | 3224,65661 |
1 кв. 2001 г. | 29147 | 28469,09 | 3136,065979 |
2 кв. 2001 г. | 26478 | 27672,65 | 3032,922749 |
3 кв. 2001 г. | 30159 | 28667,19 | 1951,31804 |
4 кв. 2001 г. | 33149 | 30459,91 | 3174,532132 |
1 кв. 2002 г. | 32451 |
рис. 8.
Число
членов скользящей средней m и параметр
-экспоненциального сглаживания (
определяется статистикой исследуемою
процесса. Чем мень-ше m и чем больше
, тем сильнее peaгирует пpoгноз на колебания
временного ряда, и наоборот, чем больше
m и чем меньше
, чем более инерционным является процесс
прогнозирования. Для подбора оптимального
параметра прогнозирования необходимо
провести сглаживание временною ряда
с помощью нескольких различных значений
параметра m или
затем определить среднюю ошибку прогнозов
и выбрать параметр, соответствующий минимальной
ошибке.