Автор работы: Пользователь скрыл имя, 12 Ноября 2009 в 12:47, Не определен
Основные условия применения -регрессионного анализа
М. о. т. широко использует аппарат теории вероятностей и (в меньшей степени) математической статистики. Задачи М. о. т., сформулированные математически, обычно сводятся к изучению специального типа случайных процессов. Исходя из заданных вероятностных характеристик поступающего потока вызовов и продолжительности обслуживания и учитывая схему системы обслуживания (наличие отказов или очередей и т. п., см. также Очередей теория), М. о. т. определяет соответствующие характеристики качества обслуживания (вероятность отказа, среднее время ожидания начала обслуживания, среднее время простоя линий связи и т. д.). В ряде более простых случаев это определение возможно аналитическими методами, в более сложных случаях приходится прибегать к моделированию соответствующих случайных процессов по Монте-Карло методу.
Становление
М. о. т. было вызвано
6. Модель Уилсона
Математические
модели управления запасами (УЗ) позволяют
найти оптимальный уровень
Входные параметры модели Уилсона
1) – интенсивность (скорость) потребления запаса, [ед.тов./ед.t];
2) s – затраты на хранение запаса, [ ];
3) K – затраты на осуществление заказа, включающие оформление и доставку заказа, [руб.];
4) – время доставки заказа, [ед.t].
Выходные параметры модели Уилсона
1) Q – размер заказа, [ед.тов.];
2) L – общие затраты на управление запасами в единицу времени, [руб./ед.t];
3) – период поставки, т.е. время между подачами заказа или между поставками, [ед.t];
4) – точка заказа, т.е.размер запаса на складе, при котором надо подавать заказ на доставку очередной партии, [ед.тов.].
Циклы изменения уровня запаса в модели Уилсона графически представлены на рис.11.1. Максимальное количество продукции, которая находится в запасе, совпадает с размером заказа Q.
Рис.11.1. График циклов изменения запасов в модели Уилсона
(формула Уилсона), | (11.1) |
где – оптимальный размер заказа в модели Уилсона;
;
;
.