Автор работы: Пользователь скрыл имя, 21 Апреля 2016 в 17:31, контрольная работа
Значение винилацетата возросло с развитием промышленности пластиков, так как он полимеризуется с образованием смол, обладающих хорошими механическими и оптическими свойствами. Широкое распространение в промышленности винилацетат нашел, прежде всего, в качестве мономера. Среди полимерных продуктов, получаемых из винилацетата, наиболее широкое применение нашли поливинилацетат, поливиниловый спирт и поливинилацетали.
Свойства винилацетата
Применение винилацетата
Общие методы получения винилацетата
Технология получения винилацетата окислением этилена в присутствии уксусной кислоты
4.1 Характеристика сырья технологии
4.2 Жидкофазный способ
4.3 Парофазный метод
4.4 Принципы технологии производства винилацетата окислением этилена в присутствии уксусной кислоты
Сравнение различных методов получения винилацетата
Список используемой литературы
Министерство образования Российской Федерации
Кафедра «Технология органического и нефтехимического синтеза»
Семестровая работа
«Анализ технологии и технологическая схема производства винилацетата»
Выполнила: ст. гр.
Проверил:
Волгоград 2013
Содержание
4.1 Характеристика сырья технологии
4.2 Жидкофазный способ
4.3 Парофазный метод
4.4 Принципы технологии
производства винилацетата
Список используемой литературы
Введение
Среди кислородосодержащих соединений, получаемых в промышленности основного органического и нефтехимического синтеза, сложные виниловые эфиры, наиболее важным из которых является винилацетат, занимают одно из первых мест.
Значение винилацетата возросло с развитием промышленности пластиков, так как он полимеризуется с образованием смол, обладающих хорошими механическими и оптическими свойствами. Широкое распространение в промышленности винилацетат нашел, прежде всего, в качестве мономера. Среди полимерных продуктов, получаемых из винилацетата, наиболее широкое применение нашли поливинилацетат, поливиниловый спирт и поливинилацетали.
Поэтому, в связи с широкой применимостью и распространённостью в промышленности винилацетата, перед современной химической промышленностью стоит задача разработать методы и пути интенсификации получения винилацетата, улучшения качества продукта, уменьшения затрат на ее производство.
Винилацетат (СН2=CH-OCO-CH3) относится к сложным виниловым эфирам и представляет собой виниловый эфир уксусной кислоты. Винилацетат - бесцветная жидкость с характерным запахом.
Регистрационный номер CAS - 108-05-4.
Физические свойства: Тпл = - 93°С, Ткип = 72,7°С.
Молекулярная масса - 86,09 г/моль.
Плотность ρ = 0,934 г/см3
Химические свойства: хорошо растворим в обычных органических растворителях; растворимость в воде при 20° С составляет 2,0 - 2,4% (мас). Винилацетат образует азеотропные смеси с водой, спиртами, углеводородами.
Винилацетат способен и к сополимеризации с теми мономерами, для которых характерна полимеризация, протекающая по свободно-радикальному механизму. Важнейшим свойством винилацетата выступает его способность к полимеризации, которая протекает по ионному механизму и катализируется кислотными агентами (протонными - НСlO4, Н3РО4, Н2SO4, CF3COOH и др.) и апротонными (кислоты Льюиса) - BF3, SbCl5, SnCl4, А1С13, TiCl4, ZnCl2 и др.
На схеме ниже показаны основные направления применения винилацетата:
Поливинилацетат [ - СН2 СН (ОСОСН3) -] n является нетоксичным бесцветным термопластическим материалом, плохо поглощающим воду. Благодаря растворимости во многих органических растворителях, эластичности и адгезионным свойствам поливинилацетат обладает высокой клеящей способностью и применяется для производства водорастворимых латексных красок, клеев, для аппретирования тканей и т.д., наиболее пригоден в качестве материала для горячей укупорки покрытий. Кроме того, широко распространены его сополимеры с винилхлоридом (винилит), этиленом, эфирами акриловой кислоты, стиролом и др.
Поливиниловый спирт ПВС [ - СН2 СН (ОH) -] n растворим в воде и используется в качестве эмульгатора и загустителя водных растворов, а также для изготовления бензостойких и маслостойких шлангов, уплотнителей, маслонепроницаемой бумаги и, главным образом, волокна, выпускаемого под разными названиями: "винол", "винал" (США), "куралон", "винилон" (Япония) и др.
Поливинилацетали обладают высокой адгезией к различным поверхностям и применяются в клеевых композициях, в качестве связывающих в производстве стеклотекстолита, для электроизоляционных покрытий и т.д.
В частности, промышленное значение имеют: поливинилформаль - при производстве эмалей (в сочетании с резольными смолами) для покрытия электропроводов, при изготовлении связывающих, а также бензостойких пленок и баков для бензина, в которых самопроизвольно затягиваются отверстия, возникающие при повреждениях, и т.д. Поливинилэтилаль - при производстве высокостойких бесцветных пленок и связывающих для покрытия по дереву. Поливинилбутираль (бутвар) - в качестве материала для прослоек в многослойных автомобильных и самолетных безосколочных стеклах, при производстве клеев, пленок, покрытий и т.д.
Сополимерам с винилхлоридом [ - СН2 СН (ОСОСН3) -] х [ - СН2 СНCl ] y (97 - 75% по масс. последнего) часто присваиваются торговые названия ПВХ: весталит, хосталит, виннол (ФРГ), люковил (Франция), кюрвик, джеон (Великобритания), сикрон, виплавил (Италия), сольвик (Бельгия) и др.
Сополимеры с этиленом [ - СН2 СН (ОСОСН3) -] х [ - СН2 СН2 -] у находят широкое применение в производстве различных типов плёнок, кабельных оболочек, транспортёрных лент, в качестве присадок, улучшающих низкотемпературные характеристики нефтепродуктов, клеев - расплавов и в других областях техники.
Метод получения из ацетилена и уксусной кислоты:
Газофазным способом.
Тщательно очищенный ацетилен насыщают парами уксусной кислоты и подогретую парогазовую смесь направляют в трубчатый контактный аппарат. Трубки контактного аппарата заполнены катализатором - ацетатом цинка или кадмия на высокопористом носителе (активированный уголь, силикагель, оксид алюминия). Температура процесса 180 - 200 °С. В начальный период катализатор обогревают высококипящим органическим теплоносителем, циркулирующим в межтрубном пространстве контактного аппарата; при установившемся процессе тепло реакции требуется отводить, что осуществляется при помощи этого же теплоносителя, охлаждаемого в выносном холодильнике. Парофазное винилирование проводят при большом избытке ацетилена. Чем выше мольное отношение ацетилена к уксусной кислоте, тем больше степень превращения кислоты за один проход через катализатор. Наибольшая степень превращения достигается при мольном отношении ацетилена к кислоте от 8: 1 до 10:1.
Однако вследствие трудности последующего выделения винилацетата из очень разбавленных контактных газов приходится проводить при значительно меньшем избытке ацетилена (4: 1 и даже 3:1). При этом степень превращения за один проход снижается и увеличивается количество непрореагировавшей кислоты, которую выделяют из контактных газов и возвращают в процесс.
Жидкофазным способом.
Жидкофазный процесс производства винилацетат осуществляют при 60 - 65 °С , пропуская с большой скоростью избыток ацетилена через реактор, в котором находится смесь ледяной уксусной кислоты и уксусного ангидрида, содержащая диспергированные ртутные соли. Винилацетат по мере его образования выводится из зоны реакции в виде паров, увлекаемых избыточным ацетиленом.
Пары винилацетата конденсируют и направляют на ректификацию. Отделяемый от жидкости ацетилен возвращают в производственный цикл.
Из двух представленных методов получения винилацетата из ацетилена и уксусной кислоты в Российской Федерации, в основном, используется газофазный способ. Жидкофазное получение более популярно за рубежом.
Рис.1 Технологическая схема получения винилацетата из ацетилена и уксусной кислоты парофазным методом.
1 – колонна – испаритель; 2, 10, 21 – сепараторы; 3, 6 – теплообменники; 4 – подогреватель; 5 – реактор; 7, 14 – водяные холодильники; 8 – труба Вентури; 9 – расширитель; 11 – скруббер; 12, 22 – сборники; 13 – насос; 15, 16 – рассольный холодильник; 17, 18, 19 – ректификационная колонна; 20 – дистилляционный куб; I – свежий ацетилен; II – свежая уксусная кислота; III – полимеры и ингибитор; IV – кротоновая фракция; V – лёгкая фракция; VI – винилацетат; VII – бифенильная смесь (теплоноситель); VIII – ацетилен на очистку; IX – скоагуллированная катализаторная пыль; X – тяжёлая фракция (этилендендиацетат, полимеры, ингибитор); XI – вода.
В реакциях с этиленом происходит прямое окислительное замещение атома водорода в молекуле этилена группами на комплексных катализаторах, содержащих переходные металлы.
Отечественными учеными (Я.К. Сыркин, И.И. Моисеев, М.Н. Варгафтик) было показано, что при пропускании этилена через раствор PdCl2 в уксусной кислоте в присутствии ацетата натрия образуется винилацетат. При этом также образуются ацетальдегид и этилидендиацетат. В основе процесса лежит следующая реакция:
Эта реакция ацетоксилирования этилена, в присутствии восстановленного катализатора, в которой происходит замещение водорода в этилене группой СН2СОО - в присутствии кислорода. В качестве катализатора, предложены хлорид и бромид палладия, ацетат палладия, металлический палладий и др. Для сравнения рассмотрим основные закономерности и технологию получения винилацетата окислением этилена в среде уксусной кислоты, как на гомогенном, так и на гетерогенном катализаторах. В промышленности получили распространение два принципиально отличных друг от друга способа получения винилацетата на основе реакции 1:
жидкофазный метод с применением окислительно-восстановительной каталитической системы;
газофазный метод с гетерогенным катализом на основе солей палладия или металлического палладия.
В промышленности винилацетат жидкофазным окислением начали получать в 1965 г., а парофазным окислением - в 1970 г.
Этилен (этен) СН2 = СН2 - простейший алкен (олефин), ненасыщенное соединение. Представляет собой бесцветный горючий взрывоопасный газ со слабым запахом.
Регистрационный номер CAS - 74-85-1.
Физические свойства: Т пл. = - 169,15°С, Т кип = - 103,71°С, Т вспышки в воздухе = = 136,1°С, Т самовоспламенения в воздухе = 490°С.
Молекулярный масса - 28,05 г/моль.
Плотность ρ = 0,001178 г/см3.
Химические свойства: типичный представитель олефинов, обладает высокой реакционной способностью; нерастворим в воде, растворим в этаноле, хорошо растворим в диэтиловом эфире и углеводородах. В природе этилен практически не встречается.
Основной метод получения этилена - пиролиз жидких дистиллятов нефти или низших парафиновых углеводородов. В России, Западной Европе и Японии сырьём служит прямогонный бензин; выход этилена около 30% с одновременным образованием значительного количества жидких продуктов, в т. ч. ароматических углеводородов.
Этилен - самое производимое органическое соединение в мире. Общее мировое производство в 2005 г. составило 107 млн. т. и продолжает расти на 4 - 6% в год.
Уксусная кислота (этановая кислота) СН3СООН - слабая, предельная одноосновная карбоновая кислота. Представляет собой бесцветную жидкость с характерным резким запахом и кислым вкусом.
Регистрационный номер CAS - 64-19-7.
Физические свойства: Т пл. = 16,75°С, Т кип = 181,1°С, Т вспышки в воздухе = 38°С, Т самовоспламенения в воздухе = 454°С.
Молекулярная масса - 60,05 г/моль.
Плотность ρ = 1,0492 г/см3.
Химические свойства: неограниченно растворима в воде, смешивается со многими растворителями. В уксусной кислоте хорошо растворимы органические соединения и газы.
Ранними промышленными методами получения уксусной кислоты были окисление ацетальдегида и бутана.
Окисление ацетальдегида кислородом воздуха в присутствии ацетата марганца (II) при повышенной температуре и давлении:
2 СН3СНО + О2 → СН3СООН
Выход уксусной кислоты составлял около 95%.
Окисление н-бутана при t = 150ч200° C и давлении 150 атм в присутствии катализатора ацетата кобальта:
2 С4Н10 + 5 О2 → 4 СН3СООН + 2 Н2О
Оба метода базировались на окислении продуктов крекинга нефти. В результате повышения цен на нефть оба метода стали экономически невыгодными, и были вытеснены более совершенным каталитическим процессом карбонилирования метанола монооксидом углерода, который происходит по формальному уравнению:
СН3ОН + СО → СН3СООН (в присутствии катализатора - йодида кобальта).
По этому методу промышленное применение получил катализатор, содержащий анион хлора и катионы Pd, Си и щелочного металла в среде уксусной кислоты. Жидкофазный процесс синтеза винилацетата включает следующие стехиометрические реакции:
Реакция 2 катализируется ацетат - ионом. Металлический палладий в уксусной кислоте медленно окисляется кислородом (низкая растворимость кислорода, невысокие константы скорости реакций окисления), поэтому в систему добавляются катализаторы и промоторы для ускорения этой реакции. Такими катализаторами являются соли меди или железа, n-бензохинон, а промотором - хлорид-ион, который вводится в виде LiCl. В системе протекают реакции:
Реакции 2 - 4 составляют суммарную реакцию процесса (реакция 1). Хлорид-ион, обладающий высокой окислительной активностью, способствует также растворению металлического палладия. Кроме уксусной кислоты в качестве растворителя могут применяться эфиры, ангидриды, пиридин, хлороформ и др.
Известен промышленный способ получения винилацетата посредством взаимодействия этилена, уксусной кислоты и кислорода в присутствии гетерогенного биметаллического палладий - золотого (Pd - Au) катализатора, а также катализатора, который содержит катализаторный носитель, палладий, гетерополикислоту, промоутер получения винилацетата, включающий ацетат кадмия, золото, медь, никель.
Информация о работе Анализ технологии и технологическая схема производства винилацетата