Автор работы: Пользователь скрыл имя, 04 Декабря 2011 в 20:05, курсовая работа
Цель исследования состоит в научном анализе процессов формирования региональной экологической политики в Российской Федерации на основе изучения ключевых, наиболее значимых политических и экологических проблем в регионах страны в конце XX-начале XXI веков.
Радиационное загрязнение
Источники и характеристика радиационного загрязнения.
Радиоактивное загрязнение биосферы это превышение естественного уровня содержания в окружающей среде радиоактивных веществ. Оно может быть вызвано ядерными взрывами и утечкой радиоактивных компонентов в результате аварий на АЭС или других предприятиях, при разработке радиоактивных руд и т.п. При авариях на АЭС особённо резко увеличивается загрязнение среды радионуклидами (стронций-90, цезий-137, церий-141, йод-131, рутений-106 и др.). В настоящее врёмя, по данным Международного агентства по атомной энергетике. (МАГАТЭ), число действующих в мире реакторов достигло 426 при их суммарной электрической мощности около 320 ГВт (17% мирового производства электроэнергии).
Ядерная энергетика, при условии строжайшего выполнения необходимых требований, более или менее экологически чище no сравнению с теплоэнергетикой, поскольку исключает вредные выбросы в атмосферу (зола, диоксиды, углерода и серы, оксиды азота и др.). Так, во Франции быстрое наращивание мощностей АЭС позволило в последние годы значительно уменьшить выбросы диоксида серы и оксидов азота в секторе энергетики соответственно на 71 и 60% . В Японии для стабилизации энергообеспечения страны намечается в ближайшие два десятилетия построить около 40 новых АЭС, что удовлетворит 43% энергопотребностей. Однако в целом в мире отмечена тенденция сокращения строительства новых АЭС.
Использование атомной энергии в широких масштабах приводит к накоплению радиоактивных отходов. Возникает проблема их захоронения.
1.1 Характеристика радиационного загрязнения.
Научные открытия и развитие физико-химических технологий в XX в. привели к появлению искусственных источников радиации, представляющих большую потенциальную опасность для человечества и всей биосферы.
Этот
потенциал на много порядков больше
естественного радиационного
Естественный радиационный фон обусловлен рассеянной радиоактивностью земной коры, проникающим космическим излучением, потреблением с пищей биогенных радионуклидов и составлял в недавнем прошлом 8—9 микрорентген в час (мкР/ч), что соответствует среднегодовой эффективной эквивалентной дозе (ЭЭД = НD) для жителя Земли в 2 миллизиверта (мЗв). Рассеянная радиоактивность обусловлена наличием в среде следовых количеств природных радиоизотопов с периодом полураспада (T1/2) более 105 лет (в основном урана и тория), а также 40К, 14С, 226Ra и 222Rn. Газ радон в среднем дает от 30 до 50% естественного фона облучения наземной биоты. Из-за неравномерности распределения источников излучения в земной коре существуют некоторые региональные различия фона и его локальные аномалии.
Указанный уровень фона был характерен для доиндустриальной эпохи и в настоящее время несколько повышен техногенными источниками радиоактивности — в среднем до 11— 12 мкР/ч при среднегодовой ЭЭД в 2,5 мЗв. Эту прибавку обусловили:
а)
технические источники
б) извлекаемые из недр минералы, топливо и вода;
в) ядерные реакции в энергетике и ядерно-топливном цикле;
г)
испытания и применение ядерного
оружия. Деятельность человека в несколько
раз увеличила число
Главную радиационную опасность представляют запасы ядерного оружия и топлива и радиоактивные осадки, которые образовались в результате ядерных взрывов или аварий и утечек в ядерно-топливном цикле — от добычи и обогащения урановой руды до захоронения отходов. В мире накоплены десятки тысяч тонн расщепляющихся материалов, обладающих колоссальной суммарной активностью.
С 1945 по 1996 г. США, СССР (Россия), Великобритания, Франция и Китай произвели в надземном пространстве более 400 ядерных взрывов. В атмосферу поступила большая масса сотен различных радионуклидов, которые постепенно выпали на всей поверхности планеты. Их глобальное количество почти удвоили ядерные катастрофы, произошедшие на территории СССР. Долгоживущие радиоизотопы (углерод-14, цезий-137, стронций-90 и др.) и сегодня продолжают излучать, создавая приблизительно 2%-ю добавку к фону радиации. Последствия атомных бомбардировок, ядерных испытаний и аварий еще долго будут сказываться на здоровье облученных людей и их потомков.
Пока еще трудно говорить о влиянии техногенного превышения естественного фона радиации на биоту биосферы. Мы еще не знаем, как может сказаться на биоте океана разгерметизация затопленных контейнеров с радионуклидами и реакторов затонувших подводных лодок. Во всяком случае, можно предполагать некоторое повышение уровня мутагенеза.
Радиационные загрязнения, связанные с технологически нормальным ядерным топливным циклом, имеют локальный характер и доступны для контроля, изоляции и предотвращения эмиссий. Эксплуатация объектов атомной энергетики сопровождается незначительным радиационным воздействием. Многолетние систематические измерения и контроль радиационной обстановки не обнаружили серьезного влияния на состояние объектов окружающей природной среды. Дозы облучения населения, проживающего в окрестностях АЭС, не превышают 10 мкЗв/год, что в 100 раз меньше установленного допустимого уровня. Вероятность радиационных аварий реакторов АЭС сейчас оценивается как 10 –4 --10 -5 в год.
1.2 ПО «Маяк»
ПО «Маяк». Самое крупное из известных сейчас скоплений радионуклидов находится на Урале, в 70 км к северо-западу от Челябинска на территории производственного объединения «Маяк». ПО «Маяк» было создано на базе промышленного комплекса, построенного в 1945—1949 гг. Здесь в 1948 г. Был пущен первый в стране промышленный атомный реактор, в 1949 г. — первый радиохимический завод, изготовлены первые образцы атомного оружия. В настоящее время в производственную структуру ПО «Маяк» входят ряд производств ядерного цикла, комплекс по захоронению высокоактивных материалов, хранилища и могильники РАО. Многолетняя деятельность ПО «Маяк» привела к накоплению огромного количества радионуклидов и сильному загрязнению районов Челябинской, Свердловской, Курганской и Тюменской областей. В результате сброса отходов радиохимического производства непосредственно в открытую речную систему Обского бассейна через р. Теча (1949—1951 гг.), а также вследствие аварий 1957 и 1967 гг. в окружающую среду было выброшено 23 млн. Ки активности. Радиоактивное загрязнение охватило территорию в 25 тыс. км2 с населением более 500 тыс. человек. Официальные данные о десятках поселков и деревень, подвергшихся загрязнению в результате сбросов радиоактивных отходов в р. Теча, появились только в 1993 г.
В 1957 г. в результате теплового взрыва емкости с РАО произошел мощный выброс радионуклидов (церий-144, цирконий-95, стронций-90, цезий-137 и др.) с суммарной активностью 2 млн. Ки. Возник «Восточно-Уральский радиоактивный след» длиной до 110 км (в результате последующей миграции даже до 400км) и шириной до 35—50 км (рис. 1.1). Общая площадь загрязненной территории, ограниченной изолинией 0,1 Ки/км2 по стронцию-90, составила 23 тыс. км2. Около 10 тыс. человек из 19 населенных пунктов в зоне наиболее сильного загрязнения с большой задержкой были эвакуированы и переселены.
Зона радиационного загрязнения на Южном Урале расширилась вследствие ветрового разноса радиоактивных аэрозолей с пересохшей части технологического водоема № 9 ПО «Маяк» (оз. Карачай) в 1967 г. В настоящее время в этом резервуаре находится около 120 млн Ки активности, преимущественно за счет стронция-90 и цезия-137. Под озером сформировалась линза загрязненных подземных вод объемом около 4 млн м3 и площадью 10 км2. Существует опасность проникновения загрязненных вод в другие водоносные горизонты и выноса радионуклидов в речную сеть.
Зоны загрязнения с
1.3 Чернобыль.
Не только нынешнее, но и последующие поколения будут помнить Чернобыль и ощущать последствия этой катастрофы. В результате взрывов и пожара при аварии на четвертом энергоблоке ЧАЭС с 26 апреля по 10 мая 1986 г. из разрушенного реактора было выброшено примерно 7,5 т ядерного топлива и продуктов деления с суммарной активностью около 50 млн Ки. По количеству долгоживущих радионуклидов (цезий-137, стронций-90 и др.) этот выброс соответствует 500—600 Хиросимам.
Из-за того, что выброс радионуклидов происходил более 10 суток при меняющихся метеоусловиях, зона основного загрязнения имеет веерный, пятнистый характер (рис. 1.2). Кроме 30-километровой зоны, на которую пришлась большая часть выброса, в разных местах в радиусе до 250 км были выявлены участки, где загрязнение достигло 200 Ки/км2. Общая площадь «пятен» с активностью более 40 Ки/км2 составила около 3,5 тыс. км2, где в момент аварии проживало 190 тыс. человек. Всего радиоактивным выбросом ЧАЭС в разной степени было загрязнено 80% территории Белоруссии, вся северная часть Правобережной Украины и 19 областей России. В целом по РФ загрязнение, обусловленное аварией на ЧАЭС, с плотностью 1 Ки/км2 и выше охватывает более 57 тыс. км2, что составляет 1,6% площади ЕТР (табл. 1.1). Уточненные в 1994 г. границы площадей, загрязненных цезием-137, по сравнению с 1993 г. почти не изменились. Следы Чернобыля обнаружены в большинстве стран Европы, а также в Японии, на Филиппинах, в Канаде. Катастрофа приобрела глобальный характер.
И сегодня спустя полтора десятилетия после чернобыльской трагедии существуют противоречивые оценки ее поражающего действия и причиненного экономического ущерба. Согласно опубликованным в 2000 г. данным из 860 тыс. человек, участвовавших в ликвидации последствий аварии, более 55 тыс. ликвидаторов умерли, десятки тысяч стали инвалидами. Полмиллиона человек до сих пор проживает на загрязненных территориях.
Таблица 1.1. Площади областей и республик России, загрязненных цезием-137 (по
состоянию на январь 1995 г.)
Области, республики | Общая
площадь области,
республики,
тыс. км2 |
Площадь загрязнений цезием-137, км2 | ||||
Ки/км2 | ||||||
1-5 | 5-15 | 15-40 | >40 | |||
1. | Белгородская | 27,1 | 1 620 | |||
2. | Брянская | 34,9 | 6 750 | 2628 | 2 130 | 310 |
3. | Воронежская | 52,4 | 1 320 | |||
4. | Калужская | 29,9 | 3 500 | 1 419 | ||
5. | Курская | 29,8 | 1 220 | |||
6. | Липецкая | 24,1 | 1 619 | |||
7. | Ленинградская | 85,9 | 850 | |||
8. | Нижегородская | 74,8 | 250 | |||
9. | Орловская | 24,7 | 8 840 | 132 | ||
10. | Пензенская | 43,2 | 4 130 | |||
11. | Рязанская | 39,6 | 5 320 | |||
12. | Саратовская | 100,2 | 150 | |||
13. | Смоленская | 49,8 | 100 | |||
14. | Тамбовская | 34,3 | 510 | |||
15. | Тульская | 25,7 | 1 320 | 1 271 | ||
16. | Ульяновская | 37,3 | 1 100 | |||
17. | Мордовия | 26,2 | 1 900 | |||
18. | Татарстан , | 68,0 | 110 | |||
19. | Чувашия | 18,0 | 80 | |||
Итого | 49 760 | 5450 | 2 130 | 310 |
Точных данных о количестве облученных и полученных дозах нет. Нет и однозначных прогнозов о возможных генетических последствиях. Подтверждается тезис об опасности длительного воздействия на организм малых доз радиации. В районах, подвергшихся радиоактивному заражению, неуклонно растет число онкологических заболеваний, особенно выражен рост заболеваемости раком щитовидной железы детей.
Загрязнение и деградация почв
Почва
— это самостоятельное
Суша занимает 29,2% поверхности Земного шара и включает земли различной категории, из которых важнейшее значение имеет плодородная почва. Площади пахотных земель постоянно сокращаются из-за горнопромышленных разработок, расширения селитебных территорий, зон промышленного, гидротехнического строительства. Застроенные земли занимают ныне более 150 млн га, а уже через несколько лет их площадь может возрасти до 300 млн га. Полностью урбанизированная поверхность земли, где дождевая вода не проникает в почву, составляет около 50 млн га (соответствует площади такого, например, государства как Франция). Это особо опасно, так как происходит нарушение круговорота воды и водного баланса, что отрицательно влияет на состояние экосистемы Земли в целом.
При неправильной эксплуатации почвы безвозвратно уничтожаются в результате эрозии, засоления, загрязнения промышленными и другими отходами. Под влиянием деятельности людей возникает ускоренная эрозия, когда почвы разрушаются в 100—1 000 раз быстрее, чем в естественных условиях. Разрушению почв способствует вырубка леса. В результате процесса эрозии за последнее столетие утрачены 2 млрд га плодородных земельных угодий, или 27% земель сельскохозяйственного использования.
Что касается химического загрязнение литосферы, то в наибольшей степени от него также страдают почвы. Загрязнение почв связано с загрязнением атмосферы и вод. В почву попадают твердые и жидкие промышленные, сельскохозяйственные и бытовые отходы. Основными загрязнителями почвы являются металлы и их соединения, радиоактивные вещества, удобрения и пестициды. О масштабах химического преобразования поверхности литосферы можно судить по следующим данным: за столетие (1870—1970) на земную поверхность осели свыше 20 млрд т шлаков, 3 млрд т золы. Выбросы цинка, сурьмы составили по 600 тыс. т, мышьяка — 1,5 млн т, кобальта — свыше 0,9 млн т, никеля — более 1 млн т. Суммарные неконтролируемые выбросы ртути составляют 4—5 тыс. т в год, а из каждой тонны добываемого свинца до 25 кг поступают в окружающую среду. Огромное количество свинца выделяется в атмосферу и с выхлопными газами автомобилей.
Информация о работе Оценка остроты экологической ситуации в отдельных регионах Росcии