Электроэнергетика в России

Автор работы: Пользователь скрыл имя, 24 Декабря 2012 в 20:47, реферат

Описание работы

Электроэнергетика - базовая отрасль экономики России, обеспечивающая потребности экономики и населения страны в электрической и тепловой энергии, во многом определяющая устойчивое развитие всех отраслей экономики страны. Эффективное использование потенциала электроэнергетической отрасли, установление приоритетов и параметров ее развития создадут необходимые предпосылки для роста экономики и повышения качества жизни населения страны. Процесс опережающего развития электроэнергетической отрасли является необходимым фактором успешного экономического развития России

Файлы: 1 файл

Чистовик.docx

— 159.62 Кб (Скачать файл)

Ведение

Электроэнергетика - базовая отрасль экономики России, обеспечивающая потребности экономики и населения страны в электрической и тепловой энергии, во многом определяющая устойчивое развитие всех отраслей экономики страны. Эффективное использование потенциала электроэнергетической отрасли, установление приоритетов и параметров ее развития создадут необходимые предпосылки для роста экономики и повышения качества жизни населения страны. Процесс опережающего развития электроэнергетической отрасли является необходимым фактором успешного экономического развития России

Увеличение  темпов развития экономики привело  к существенному росту спроса на электроэнергетические и тепловые ресурсы внутри страны. В настоящее  время при большом различии темпов роста спроса на электрическую и  тепловую энергию в регионах в  условиях рыночных реформ, увеличивающих  число независимых производителей электрической энергии, необходимо обеспечить максимально эффективное  использование потенциала электроэнергетической  отрасли.

Электроэнергетическая отрасль России - это развивающийся в масштабах всей страны высокоавтоматизированный комплекс электростанций, электрических сетей и объектов электросетевого хозяйства, объединенных единым технологическим циклом и централизованным оперативно-диспетчерским управлением.

 

1. Основные виды производства электроэнергии на территории России

Значение электроэнергетики в экономике России, так же как и её общественной жизни трудно переоценить — это основа всей современной жизни.

Современный электроэнергетический комплекс России включает почти 600 электростанций единичной  мощностью свыше 5 МВт. Общая установленная  мощность электростанций России составляет 220 тыс. МВт. Установленная мощность парка действующих электростанций по типам генерации имеет следующую  структуру: 21% - это объекты гидроэнергетики, 11% -атомные электростанции и 68% - тепловые электростанции.

Развитие  электроэнергетики на длительную перспективу  в Российской Федерации определяется Генеральной схемой размещения объектов электроэнергетики на период до 2020 года.

1.1 Тепловая энергетика

Лидирующее  положение теплоэнергетики является исторически сложившейся и экономически оправданной закономерностью развития российской энергетики.

Тепловые  электростанции (ТЭС), действующие на территории России, можно классифицировать по следующим признакам:

· по источникам используемой энергии – органическое топливо, геотермальная энергия, солнечная  энергия;

· по виду выдаваемой энергии – конденсационные, теплофикационные;

· по использованию  установленной электрической мощности и участию ТЭС в покрытии графика  электрической нагрузки – базовые (не менее 5000 ч использования установленной  электрической мощности в году), полупиковые или маневренные (соответственно3000 и 4000 ч в году), пиковые (менее 1500-2000 ч в году).

В свою очередь, тепловые электростанции, работающие на органическом топливе, различаются  по технологическому признаку:

· паротурбинные (с паросиловыми установками на всех видах органического топлива: угле, мазуте, газе, торфе, сланцах, дровах и  древесных отходах, продуктах энергетической переработки топлива и т.д.);

· дизельные;

· газотурбинные;

· парогазовые.

Наибольшее  развитие и распространение в  России получили тепловые электростанции общего пользования, работающие на органическом топливе (газ, уголь), преимущественно  паротурбинные.

В настоящее  время доля производства тепловой генерации  составляет около 68% в общем объеме производства электроэнергии в стране. Общая установленная мощность теплофикационных энергоблоков составляет 154,7 ГВт. Основными видами топлива для тепловых электростанций являются газ и уголь.

Самой большой  ТЭС на территории России является крупнейшая на Евразийском континенте Сургутская ГРЭС-2 (4800 МВт), работающая на природном газе (ГРЭС - аббревиатура, сохранившаяся с советских времен , означает государственную районную электростанцию). Сургутская ГРЭС-2 является также одной из самых эффективных тепловых электростанций страны.

Из электростанций, работающих на угле, наибольшая установленная  мощность у Рефтинской ГРЭС (3800 МВт). К крупнейшим российским ТЭС относятся также Сургутская ГРЭС-1 и Костромская ГРЭС, мощностью свыше 3 тыс. МВт каждая.

В процессе реформы отрасли крупнейшие тепловые электростанции России были объединены в оптовые генерирующие компании (ОГК) и территориально-генерирующие компании (ТГК).

В настоящий  момент основной задачей развития тепловой генерации является обеспечение  технического перевооружения и реконструкции  действующих электростанций, а также  ввод новых генерирующих мощностей  с использованием передовых технологий в производстве электроэнергии.

1.2 Гидроэнергетика

Гидроэнергетика предоставляет системные услуги (частоту, мощность) и является ключевым элементом обеспечения системной  надежности Единой Энергосистемы страны, располагая более 90% резерва регулировочной мощности. Из всех существующих типов  электростанций именно ГЭС являются наиболее маневренными и способны при  необходимости быстро существенно  увеличить объемы выработки, покрывая пиковые нагрузки.

У России большой гидроэнергетический потенциал, что подразумевает огромные возможности  развития отечественной гидроэнергетики. На территории Российской Федерации  сосредоточено около 9% мировых запасов  гидроресурсов. По обеспеченности гидроэнергетическими ресурсами Россия занимает второе место  в мире, опережая США, Бразилию, Канаду. На сегодняшний день общий теоретический  гидроэнергопотенциал России определен в 2900 млрд кВт-ч годовой выработки электроэнергии или 170 тыс. кВт-ч на 1 кв. км территории. Однако сейчас освоено лишь 20% этого потенциала. Одним из препятствий развития гидроэнергетики является удаленность основной части потенциала, сконцентрированной в центральной и восточной Сибири и на Дальнем Востоке, от основных потребителей электроэнергии.

В настоящее  время на территории России работают 102 гидроэлектростанции мощностью  свыше 100 МВт, одна ГАЭС (Загорская гидроаккумулирующая электростанция). Общая установленная мощность гидроагрегатов на ГЭС в России составляет примерно 46 ГВт (5 место в мире). В 2010 году российскими гидроэлектростанциями выработано 165 млрд. кВт/ч электроэнергии. В общем объеме производства электроэнергии в России доля ГЭС не превышает 21%.

В ходе реформы электроэнергетики была создана федеральная гидрогенерирующая  компания ОАО «ГидроОГК» («РусГидро»), которая объединила основную часть гидроэнергетических активов страны. На сегодняшний день в «РусГидро» входит 15 федеральных электростанций.

До недавнего  времени крупнейшей российской гидроэлектростанцией считалась Саяно-Шушенская ГЭС  им. П. С. Непорожнего мощностью 6721 МВт (Хакасия). Однако после трагической  аварии 17 августа 2009 года ее мощности временно выбыли из строя. В настоящее время  полным ходом ведутся восстановительные  работы, которые предполагается завершить  полностью к 2014 году. 24 февраля 2010 года состоялось торжественное включение  в сеть под нагрузку гидроагрегата  № 6 мощностью 640 МВт.

Вторая  по установленной мощности гидроэлектростанция  России – Красноярская ГЭС. Энергия, вырабатываемая станцией, практически  полностью потребляется Красноярским алюминиевым заводом – одним  из крупнейших предприятий отрасли  в мире.В настоящее время гидроэнергетика является одним из наиболее эффективных направлений электроэнергетики. Это один из главных поставщиков системных услуг: резервирования энергии и мощности, поддержания частоты и напряжения в Единой энергосистеме России, а также гарант снижения зависимости стоимости электроэнергии от изменения стоимости органического топлива. Выработка электроэнергии российскими ГЭС обеспечивает ежегодную экономию 50 млн. тонн условного топлива, потенциал экономии составляет 250 млн. тонн; позволяет снижать выбросы СО2 в атмосферу на величину до 60 млн. тонн в год, что обеспечивает России практически неограниченный потенциал прироста мощностей энергетики в условиях жестких требований международного сообщества по ограничению выбросов парниковых газов. Кроме своего прямого назначения – производства электроэнергии с использованием возобновляемых ресурсов – гидроэнергетика дополнительно решает ряд важнейших для общества и государства задач: создание систем питьевого и промышленного водоснабжения, развитие судоходства, создание ирригационных систем в интересах сельского хозяйства, рыборазведение, регулирование стока рек, позволяющее осуществлять борьбу с паводками и наводнениями, обеспечивая безопасность населения. Гидроэнергетика является инфраструктурой для деятельности и развития целого ряда важнейших отраслей экономики и страны в целом. Каждая введенная в эксплуатацию гидроэлектростанция становится точкой роста экономики региона своего расположения, вокруг нее возникают производства, развивается промышленность, создаются новые рабочие места.

Перспективное развитие гидроэнергетики России связывают  с освоением потенциала рек Северного  Кавказа (строятся Зарамагские, Кашхатау, Гоцатлинская ГЭС, Зеленчукская ГЭС-ГАЭС; в планах - вторая очередь Ирганайской ГЭС, Агвалинская ГЭС, развитие Кубанского каскада и Сочинских ГЭС, а также развитие малой гидроэнергетики в Северной Осетии и Дагестане), Сибири (достройка Богучанской, Вилюйской-III и Усть-Среднеканской ГЭС, проектирование Южно-Якутского ГЭК и Эвенкийской ГЭС), дальнейшим развитием гидроэнергетического комплекса в центре и на севере Европейской части России, в Приволжье, строительством выравнивающих мощностей в основных потребляющих регионах (в частности – строительство Ленинградской и Загорской ГАЭС-2).

1.3 Атомная энергетика

Россия  обладает технологией ядерной электроэнергетики  полного цикла от добычи урановых руд до выработки электроэнергии.

На сегодняшний  день в нашей стране эксплуатируется 10 атомных электростанций (АЭС) это :

  • Балаковская АЭС расположена на левом берегу Саратовского водохранилища реки Волги в 10 км северо-восточнее г.Балаково Саратовской обл. приблизительно на расстоянии 900 км юго-восточнее г. Москвы.  В составе первой очереди АЭС эксплуатируются четыре энергоблока с модернизированными реакторами ВВЭР-1000 , установленной электрической мощностью по 1000МВт каждый. Вторая очередь включает в себя два энергоблока с установленной электрической мощностью по 1000 МВт каждый, с соответствующим расширением вспомогательных объектов первой очереди. Связь Балаковской АЭС с Единой энергетической системой России осуществляется пятью линиями электропередача напряжением 220 кВ и пятью линиями электропередач напряжением 500 кВ.
  • Белоярская АС им. И.В. Курчатова - первенец большой ядерной энергетики СССР. Станция расположена на Урале, в 3-х километровой зоне от станции построен город энергетиков - Заречный. Строительство первой очереди было начато в 1958 г., а в апреле 1964 г. вступил в строй энергоблок с водографитовым канальным реактором мощностью 100 МВт. Второй энергоблок мощностью 200 МВт был введен в эксплуатацию в 1967 г.  Белоярская AC - единственная АС с энергоблоками разных типов на которых отрабатывались принципиальные технические решения для большой ядерной энергетики. На станции сооружены три энергоблока: два с реакторами на тепловых нейтронах и один с реактором на быстрых нейтронах. Энергоблок 1 с водографитовым канальным реактором АМБ-100 мощностью 100 МВт остановлен в 1981 г., энергоблок 2 с реактором АМБ-200 мощностью 200 МВт остановлен в 1989 г. В настоящее время эксплуатируется третий энергоблок с реактором БН-600 электрической мощностью 600 МВт, пущенный в эксплуатацию в апреле 1980 г., - первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах. Он также является крупнейший в мире энергоблоком с реактором на быстрых нейтронах. За время своего существования AC произвела 102818 млн кВт/час электроэнергии. (на конец 1999г)
  • Билибинская атомная теплоэлектроцентраль - это первенец атомной энергетики в Заполярье, уникальное сооружение в центре Чукотки, обеспечивающее жизнедеятельность горнорудных и золотодобывающих предприятий Чукотки (800 км к югу от Певека, 2000 км к северу от Магадана и 12000 км от Москвы).Зима длится более 10 месяцев в году, зимняя температура иногда достигает - 55 и зимой круглые сутки темно. Город, окруженный сотнями километров огромных озер, болот, куда добраться можно только по воздуху, или долгая дорога в 2000 км от Магадана. И то это возможно только зимой, когда земля сильно промерзает, на санях. Станция состоит из четырех однотипных энергоблоков суммарной электрической мощностью 48 МВт с реакторами ЭГП-б (водно-графитовый гетерогенный реактор канального типа).
  • Калининская АЭС расположена на севере Тверской области в 150 км от города Тверь. Расстояние до Москвы - 330 км; до Санкт-Петербурга - 400 км. Площадка АЭС примыкает к южному берегу озера Удомля, сообщающимся естественной протокой с озером Песьво. Общая площадь, занимаемая КАЭС, составляет 287,37 га. Выдача электроэнергии осуществляется по сетям РАО "ЕЭС России": линия "Опытная", 750 кВ (на Москву) - 22%; - линия "Ленинградская", 750 кВ - 21%; - линия "Владимир", 750 кВ - 27%; - линия "Новая-1", "Новая-2", 330 кВ (Тверьэнерго) - 30% (в равных долях).  Тепловая схема КАЭС - двухконтурная. Первый контур состоит из одного реактора типа ВВЭР-1000 (В-320, малая серия) и четырёх циркуляционных петель охлаждения. Теплоносителем и замедлителем служит обычная вода с дозированным содержанием бора. Второй контур состоит из одной турбоустановки с системой регенерации, испарительной и водопитательной установок.
  • Кольская АЭС расположена за Полярным кругом на берегу озера Имандра. За период с 1973 по 1984 гг. введены и эксплуатируются четыре энергоблока с реакторами ВВЭР-440: - два энергоблока с реакторами В-230, ст.№№ 1, 2 - два энергоблока с реакторами ВВЭР-440 В-213, ст. №№ 3,4. Установленная тепловая мощность АЭС составляет 5500 МВт, что соответствует электрической мощности 1760 МВт. Кольская АЭС поставляет электроэнергию в энергосистемы "Колэнерго" Мурманской области и "Карелэнерго" Республики Карелия
  • Курская АС расположена в 40 км юго-западнее г. Курска на левом берегу реки Сейм. На АС эксплуатируются четыре энергоблока с канальными реакторамиPВМК-1000. Курская АС является важнейшим узлом Единой энергетической системы России. Основным потребителем является энер-госистема "Центр", которая охватывает 19 областей, в основном. Центральной России. Около 30% электроэнергии, вырабатываемой Курской АЭС, используется для нужд Курской области. Курская АЭС выдает электроэнергию по 11 линиям электропередач: 2 линии (110 кВ) - для электроснабжения собственных нужд; 6 линий (330 кВ) - 4 линии для электроснабжения области; 2 для севера Украины; 3 линии (750 кВ) - 1 линия для Старооскольского металлургического комбината; 1 линия для северо-востока Украины; 1 линия для Брянской области.
  • Ленинградская АЭС расположена в 80 км западнее Санкт-Петербурга на южном берегу Финского залива Балтийского моря. Станция включает в себя 4 энергоблока электрической мощностью 1000 МВт каждый, 1-й и 2-й энергоблоки (первая очередь) расположены в 5 км к юго-западу от города Сосновый Бор, 3-й и 4-й энергоблоки (вторая очередь) находятся на два километра западнее. С моря Ленинградская АЭС кажется кораблем у причала в глубине Копорской губы Финского залива. Принципиальная схема АЭС.Днем рождения АЭС принято считать 23 декабря 1973 года, когда члены Государственной приемной комиссии после 72-часового экзамена, который держали все технологические системы первого в нашей стране атомного энергоблока единичной мощностью в 1000000 киловатт, поставили свои подписи в его "зачетке". Но сердце ядерного исполина начало биться на три месяца раньше - 12 сентября, и именно тогда всю мировую печать облетело сенсационное сообщение: "Первый из семьи атомных гигантов России обретает жизнь!" Именно этот день можно смело называть днем рождения большой ядерной энергетики нашей державы. 
  • Нововоронежская АЭС расположена в 42 км. южнее г. Воронежа на левом берегу р. Дон. НВАЭС является первенцем освоения энергоблоков с реакторами типа ВВЭР. Каждый из пяти реакторов станции является прототипом серийных энергетических реакторов установленных на других АЭС. Всего на АЭС построено пять энергоблоков: 
       энергоблок 1 с реактором         ВВЭР-210, 
       энергоблок 2 с реактором         ВВЭР-365, 
       энергоблоки 3, 4 с реакторами ВВЭР-440, 
       энергоблок 5 с реактором        ВВЭР-1000.

В настоящее время  в эксплуатации находятся три  энергоблока (энергоблоки 1 и 2 выведены из работы в 1988 и 1990 гг. соответственно). В пяти километрах от промышленной зоны АС на берегу искусственного моря расположился благоустроенный город  энергетиков - Нововоронеж.

  • Ростовская (Волгодонская) атомная электростанция — расположена в Ростовской области в 12 км от города Волгодонска на берегу Цимлянского водохранилища. Электрическая мощность двух действующих энергоблоков составляет 2000 МВт. С 2001 по 2010 годы станция носила название «Волгодонская АЭС», с пуском второго энергоблока станция была обратно переименована в «Ростовскую АЭС». Ростовская АЭС является одним из крупнейших предприятий энергетики Юга России, обеспечивающим около 15% годовой выработки электроэнергии в этом регионе. Электроэнергия Ростовской АЭС передается потребителям по пяти линиям электропередачи напряжением 500 кВ на Шахты (Ростовская область), Тихорецк (Краснодарский край), Невинномысск,Буденновск (Ставропольский край) и Южная (Волгоградская область). Выработка электроэнергии составляет свыше 25 млн кВт-час в сутки и около 8 миллиардов кВт-час в год. В 2008 году АЭС произвела 8 млрд 120 млн кВт-час. Коэффициент использования установленной мощности (КИУМ) составил 92,45%. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.
  • Смоленская АС расположена недалеко от западной границы России, в Смоленской области. Ближайшие региональные центры: Смоленск - 150 км, Брянск - 180 км, Москва - 350 км. На Смоленской АЭС эксплуатируются три энергоблока с реакторами РБМК-1000. Проектом предусматривалось строительство двух очередей, по два блока с общими вспомогательными сооружениями и системами в каждой, но в связи с прекращением в 1986 году строительства четвертого энергоблока вторая очередь осталась незавершенной. Первая очередь Смоленской АЭС относится ко второму поколению АЭС с реакторами РБМК-1000, вторая очередь - к третьему. Замедлителем нейтронов в реакторах этого типа служит графит, в качестве теплоносителя используется вода. Все энергоблоки оснащены системами локализации аварий, исключающими выброс радиоактивных веществ в окружающую среду даже при самых тяжелых предусмотренных проектом авариях, связанных с полным разрывом трубопроводов контура охлаждения реактора максимального диаметра. Все оборудование контура охлаждения размещено в герметичных железобетонных боксах, выдерживающих давление до 4,5кгс/см2. Для конденсации пара в аварийных режимах в составе системы локализации аварий предусмотрен бассейн - барботер, расположенный под реактором, с запасом воды около 3000 м3. Специальные системы обеспечивают надежный отвод тепла от реактора даже при полной потере станцией электроснабжения с учетом возможных отказов оборудования. Для нужд технического водоснабжения на реке Десна было создано искусственное водохранилище площадью 42 км, для обеспечения населения хозяйственной и питьевой водой используются подземные воды.

Информация о работе Электроэнергетика в России