Математическое моделирование в экологии

Автор работы: Пользователь скрыл имя, 13 Января 2015 в 20:43, курсовая работа

Описание работы

Данная курсовая работа посвящена математическому моделированию в экологии, в частности, моделированию лесных сообществ.
В первой части представлены основные типы моделей и их принципы, а так же классификация математических моделей биологических продукционных процессов.

Файлы: 1 файл

Матмоделирование в экологии.doc

— 87.50 Кб (Скачать файл)

В качестве примера приведу математическую модель экосистемы бореальных лесов Восточной Сибири.

Природные экосистемы Сибири играют существенную роль в стабилизации атмосферы и гидросферы в условиях современного климата, особенно в связи с аккумулированием тепличных газов из атмосферы. В настоящее время неизвестно, как будут функционировать и изменяться существующие природные экосистемы на территории Сибири в условиях меняющегося глобального и особенно регионального климата.

Разработан метод основанный на разделении рассматриваемого региона на компартменты, однородные по своим структурно-

функциональным характеристикам (биоценозы). Каждый из этих компартментов моделируется как целое в его условном центре, однако задается и градиент изменения параметров от центра к границам компартмента. Моделирование компартмента-биоценоза происходит при помощи обыкновенных дифференциальных уравнений. Число компартментов и границы между ними определяются путем анализа баз данных по исследуемому региону. Данный метод предпочтительнее еще и потому, что имеет дело с реальным биологическим объектом – биоценозом, тогда как традиционные методы создают искусственную градацию.

Схема компартментов включает границы биоценозов, а также их условные центры. Модельный центр не обязательно физический центр компартмента-биоценоза, это точка, в которой значения определяющего компонента биоценоза равно среднему по всему биоценозу. Эта точка считается центром координат при определении координат всех других точек биоценоза. Параметры, влияющие на динамику биомассы определяющего компонента биоценоза, изменяются по отношению к центральной точке, т.е. имеется их градиент. Таким образом, можно рассчитать динамику любого компонента системы в любой интересующей нас точке.

Построена точечная математическая модель экосистемы бореальных лесов Восточной Сибири, для описания основных процессов в цикле углерода, способная к пространственным расчетам на основе предложенного выше метода.

В модели потоков вещества в бореальном лесу описаны следующие основные процессы, позволяющие исследовать поведение системы, не превращая в то же время ее в сложную для анализа имитационную модель - фотосинтез, дыхание, сезонные изменения активной фитомассы, водный баланс дерева, влияние на фотосинтез освещенности, концентрации углекислого газа, воды. Также в модель включено описание влияния

гетеротрофов на изменение фитомассы, водного баланса почвы, баланса минеральных элементов. Такие факторы как солнечная радиация, динамика осадков и температуры, вертикальный и горизонтальный перенос атмосферных газов являются входными параметрами модели. Модель может быть расширена на другие экосистемы соответствующей группы.

Также моделью рассчитываются скорости потоков углерода из атмосферы в бореальный лес и обратно, что позволяет использовать эти данные непосредственно в качестве входных параметров в моделях атмосферы. В модели учтен такой важный фактор, влияющий на накопление углерода в лесных системах, как лесные пожары. Частота и интенсивность их задаются рендомизационной функцией.

Общий численный прогноз развития ценоза бореальных лесов в условиях глобального изменения климата для различных сценариев, в частности его реакции на изменение среднегодовой температуры, влажности, освещенности, фоновых концентраций кислорода и углекислого газа, показал следующее. При увеличении температуры и влажности в пределах оценок сценариев «глобального изменения» интенсивность круговорота в экосистеме возрастает на 10-15%. Учет снижения освещенности, напрямую связанную с увеличением влажности, несколько снижает эффект. Так же и постоянное увеличение температуры ведет в конечном итоге к подавлению системы. Увеличение же только концентрации углекислого газа без учета других факторов не приводит к заметному изменению.

Модельный расчет показал, что в результате возрастания температуры и влажности происходит накопление углерода бореальными лесами, причем в основном в биомассе дерева. Скорость аккумуляции углерода может достигать значений 0.8-1.0 тонн углерода на гектар в год. Однако при учете фактора лесных пожаров модельный прогноз неоднозначен, возможно, из-за недостаточно строгого модельного описания этого существенного процесса.

 

Глобальные модели

Особый статус имеют математические модели, в которых рассматриваются глобальные изменения биоты в результате тех или иных антропогенных воздействий, или изменений климата в результате космических или геофизических причин. Классической является модель ядерной зимы, предсказавшая глобальное изменение климата на срок в несколько десятилетий в сторону понижения температур ниже нуля по Цельсию и гибель биосферы в случае широкомасштабной ядерной войны. Эта модель и ее последующее обсуждение имели несомненное политическое значение и в большой мере послужили причиной приостанови гонки ядерных вооружений.

При моделировании глобальных экологических процессов необходимо учитывать огромное число факторов, пространственную неоднородность Земли, физические и химические процессы, антропогенные воздействия, связанные с развитием промышленности и ростом народонаселения. Сложность задачи требует применения системного подхода, впервые введенного в практику математического моделирования Дж. Форрестером (Principles of systems. 1968, World Dynamics, 1971). Результатом работ, выполненных по заказу Римского клуба - международной группы выдающихся бизнесменов, государственных деятелей и учены стала построенная на основе идей Дж. Форрестера компьютерная модель "World 3". В 1972 г. результаты этой работы были суммированы в книге D.Meadows et al. "The limits to Growth", которая вызвала сенсацию. В модели Земля была рассмотрена как единая система, в которой происходят процессы, связанные с ростом населения, промышленного капитала, производства продуктов питания, потребления ресурсов и загрязнения окружающей среды. Результаты моделирования взаимодействия этих процессов привели к неутешительному выводу о том, что если существующие тенденции роста численности населения мира, индустриализации, загрязнения окружающей среды, производства продуктов питания и истощения ресурсов останутся неизменным, пределы роста на нашей планете будут достигнуты в течение ближайших десятилетий.

В последующие годы работа над моделью была продолжена. Блоки, характеризующие каждый из процессов, были разработаны гораздо более подробно, в модель включены данные, полученные за прошедшие годы специалистами разных областей. Результаты достаточно популярно изложены в книгe Donella Meadows,, Dennis Meadows, Jorgen Randers "Beyond the Limits". Возможные пути достижения предельно допустимого уровня численности человечества.

Прогноз развития системы в случае сохранения существующих в настоящее время тенденций. Для того, чтобы осуществился сценарий монотонного приближения к устойчивому равновесию необходимо принятие программ стабилизации численности населения и объема промышленного производства, внедрения технологий, уменьшающих выбросы загрязняющих веществ, эрозию почв и повышающих эффективность использования природных ресурсов.

Существует точка зрения, что стабилизация численности населения произойдет в силу системного развития человечества в процессе так называемого демографического перехода. Прогнозы такого типа моделей дают также критическую дату падения скорости роста человечества около 2030. В этом случае численность будет еще продолжать расти примерно до конца следующего века и остановится на цифре 12-14 млрд. человек. Так или иначе, работа над внедрением энергосберегающих технологий, борьба против хищнического расходования природных ресурсов и за охрану окружающей среды остается необходимым условием выживания человечества.

В настоящее время интенсивно разрабатываются глобальные модели для прогнозирования климатических изменений, связанных с парниковым эффектом. (Edmonds J, Reilly j. 1985; "Global Energy: Assessing the Future"),, (Alkamo J.(ed), 1994: "IMAGE 2.0: Integrating Modeling of Global Climate Change").

Такого типа интегральные модели включают в себя огромные массивы сведений о включенных в них подсистемах. Например, разработанная в рамках международной программы "Climate Change 1995. Impacts, adaptations and mitigation of Climate Change; Scientific-Technical Analysis" модель IMAGE (Integrated Model to Assess the Greenhouse Effect) включает в себя несколько взаимосвязанных блоков c разной степенью пространственной детализации. Субмодель "Промышленная энергетическая система" рассматривает 13 промышленных регионов, в каждом из них подсчитывается расходование энергии и промышленная продукция. Субмодель" "Экосистема суши" в этой модели разработана наиболее детально: изменения моделируются на сетке со стороной ячейки в 0,5 градуса. Каждая ячейка характеризуется своим климатом, топографией, почвой и растительным покровом с учетом взаимодействий растительность - климат - почва и изменений, которые вносятся в эту систему при эксплуатации человеком земель для сельскохозяйственных и промышленных нужд. Изменения растительного покрова рассчитываются в специальной подмодели "BIOME" (Prentice, 1992). Рассчитывают потенциальную продуктивность агрокультур и естественного растительного покрова, а также потребности населения данной территории в пище, корме для животных, древесине, топливе с учетом предпочтений населением того или иного вида пищи, и социоэкономических факторов. Учитываются также потоки продовольственных и промышленных товаров из одних районов Земли в другие, интенсивность автотранспорта в данной местности, инфраструктура, численность населения. Таким образом устанавливаются локальные модели углеродного обмена для каждой местности и баланс газов, определяющих парниковый эффект, содержание которых в атмосфере включается в подмодель "Система атмосферы и океанов".. Модель дает прогноз таяния полярных людов, поднятия уровня мирового океана, значительного потепления климата в северном полушарии, в том числе на территории России, и связанного с этим смещения границ растительности, в том числе широколиственных и хвойных лесов к северу в область тундры.

Смысл таких глобальных моделей заключается в том, что они позволяют оценить вклад отдельных процессов и регионов в общий баланс вещества и энергии на Земле, и решать обратную задачу о влиянии на локальные процессы этих глобальных показателей. Такой всесторонний учет множества факторов и связей возможет только в рамках моделей, интегрирующих знания о тысячах взаимосвязей и десятках и сотнях тысяч параметров пространственно неоднородной системы и возможен только с использованием современной вычислительной техники и геоинформационных технологий.

Проблемы моделирования в экологии

Авторы классических экологических моделей давали своим работам многообещающие заголовки типа «математическая теория борьбы за существование», было ясно, что сколько-нибудь поддающиеся исследованию классическими методами математические модели в виде дифференциальных уравнений слишком просто, чтобы в самом деле описывать реально существующие природные сообщества. Наоборот, признание того факта, что и специально созданные лабораторные сообщества тоже плохо согласуются, потребовало длительной экспериментальной работы. Во времена Дарвина, сложилась бесспорно правильная в общих чертах картина функционирования экологических сообществ. Согласно этой картине, любая природная экологическая система состоит из трех крупных видов, называемых «трофическими уровнями», а именно из:

продуцентов

консументов

редуцентов.

Простейшие оценки показывают, что существование экосистемы возможно только за счет круговорота вещества. Если бы этот круговорот в каком-то звене остановился, то имеющиеся в доступном для экосистемы виде запасы вещества, из которого строятся живые организмы, скоро оказались бы исчерпанными.

При более детальном изучении конкретной экосистемы каждый трофический уровень разбивается на более мелкие, а если основной единицей экологии считать биологический вид, то общее число таких единиц в любой реальной экосистеме колоссально, и трофические взаимосвязи между ними невообразимо сложны. Нельзя думать, чтобы подобные взаимосвязи можно было описать моделью в виде, скажем, системы дифференциальных уравнений, которая поддавалась бы исследованию в классическом смысле, т.е. Интегрированию в формульном виде или хотя бы качественному исследованию.

Ряд печальных опытов убедил человечество в том, что экосистемы нужно изучать в целом, не ограничиваясь лишь теми видами, которые для человека представляют экономический интерес. В этой связи можно говорить, например, о концентрации в отдельных звеньях трофических цепочек некоторых ядов, которые попадают в природную среду с промышленными отходами, казалось бы, в сильно разбавленном и потому безопасном виде. Они, однако, могут быть накоплены живыми организмами и в конце концов попасть обратно в пищу человека в концентрированном виде. Таки образом, мы приходим к выводу, что экосистему, нужно исследовать в целом, и притом на количественном уровне.

Вывод заключается в том, что математическое моделирование любой экологической системы представляет собой обширный, продолжительный и дорогостоящий эксперимент, который имеет очень мало шансов на удачу.

Наиболее актуальными в мировой науке проблемами в экологии, решаемыми математическими методами, на настоящий момент являются:

1. моделирование биогеохимических  циклов элементов, в первую очередь  углерода и азота, в особенности в связи с оценкой баланса углерода в рамках Киотского протокола;

2. управление природными и искусственными экосистемами с целью сохранения биоразнообразия и оптимизации хозяйственно полезной продукции.

3. проблемы устойчивого развития природных экосистем в различных биомах земного шара, в первую очередь в бореальных и тропических лесах, тундре и пустынях при изменениях, в том числе и катастрофических, внешних условий – изменения климата, лесные пожары, вспышки численности насекомых-вредителей, наводнения и засухи.

Во всех этих направлениях российские ученые входят в число лидирующих. Важно отметить их участие в больших международных коллективах, в которых роль российских ученых, как правило, состоит в методологических постановках задач и, при необходимости, высокопрофессиональной математической технике их решения.

В настоящее время в России можно выделить несколько центров, в которых развивается математическое моделирование в экологии. Это географический, биологический и почвенный факультеты Московского государственного университета им. М.В. Ломоносова, чьи коллективы пересекаются с институтами Академии наук, в первую очередь с Институтом проблем эволюции и экологии им. А.Н. Северцова РАН; Институтом физики атмосферы им. А.М. Обухова РАН и Институтом глобального климата и экологии РАН и Госкомгидромета, в которых сейчас сосредоточены исследования по теоретической экологии и глобальным моделям, Красноярским научным центром РАН (Институт биофизики, Институт леса и древесины им. В.Н. Сукачева, Вычислительный центр и др.), Пущинским научным центром РАН (Институт физико-химических и биологических проблем почвоведения, Институт математических проблем биологии, Институт теоретической и экспериментальной биофизики), Карельский филиал РАН, Ростовский госуниверситет.

Заключение

Современная математическая экология представляет собой междисциплинарную область, включающую всевозможные методы математического и компьютерного описания экологических систем. Теоретической базой для описания взаимодействий между видами в экосистемах служит динамика популяции.

Информация о работе Математическое моделирование в экологии