Автор работы: Пользователь скрыл имя, 27 Апреля 2010 в 17:21, Не определен
Эволюция развития человечества и создание индустриальных методов хозяйствования привели к образованию глобальной техносферы, одним из элементов которой является железнодорожный транспорт. Природная среда при функционировании элементов техносферы является источником сырьевых и энергетических ресурсов и пространством для размещения ее инфраструктуры.
Железнодорожный транспорт по объему грузовых перевозок занимает первое место среди других видов транспорта, по объему перевозок пассажиров второе место после автомобильного транспорта.
Цвета, которые мы воспринимаем, различаются в зависимости от длины волны видимого света.
Причина, по которой человек способен видеть свет заключается в воздействии света определенных длин волн на глазную сетчатку. Свет с длинами волн длиннее, чем самая длинная в спектре видимого света (красный цвет), называется инфракрасным (от латинского слова infra - ниже; то есть ниже той части спектра, которую может воспринять глаз). А свет с длинами волн короче наиболее коротких в видимом спектре называется ультрафиолетовым (от латинского слова ultra - более, сверх; то есть длина волны выше той, которую может воспринять глаз).
Человеческому глазу не доступен ни инфракрасный, ни ультрафиолетовый свет, как и многие другие типы волн, но он может воспринимать огромный диапазон различных цветов (диапазон волн).
Ультрафиолетовое излучение (ультрафиолет, УФ, UV) — электромагнитное излучение, занимающее диапазон между видимым и рентгеновским излучением (380 — 10 нм, 7,9×1014 — 3×1016 Гц). Диапазон условно делят на ближний (380—200 нм) и дальний, или вакуумный (200—10 нм) ультрафиолет, последний так назван, поскольку интенсивно поглощается атмосферой и исследуется только вакуумными приборами.
В
таблице 2 показаны виды ультрафиолетового
излучения.
Таблица 2 – Виды ультрафиолетового излучения
Наименование | Аббревиатура | Длина волны в нанометрах | Количество энергии на фотон |
Ближний | NUV | 400 нм — 300 нм | 3.10 — 4.13 эВ |
Средний | МUV | 300 нм — 200 нм | 4.13 — 6.20 эВ |
Дальний | FUV | 200 нм — 122 нм | 6.20 — 10.2 эВ |
Экстремальный | EUV, XUV | 121 нм — 10 нм | 10.2 — 124 эВ |
Вакуумный | VUV | 200 нм — 10 нм | 6.20 — 124 эВ |
Ультрафиолет А, длинноволновой диапазон, Чёрный свет | UVA | 400 нм — 315 нм | 3.10 — 3.94 эВ |
Окончание таблицы 2 | |||
Наименование | Аббревиатура | Длина волны в нанометрах | Количество энергии на фотон |
Ультрафиолет B (средний диапазон) | UVB | 315 нм — 280 нм | 3.94 — 4.43 эВ |
Ультрафиолет С, коротковолновой, гермицидный диапазон | UVC | 280 нм — 100 нм | 4.43 — 12.4 эВ |
Рентгеновское излучение, невидимое излучение, способное проникать, хотя и в разной степени, во все вещества. Представляет собой электромагнитное излучение с длиной волны порядка 10-8 см.
Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру.
Рентгеновские
лучи представляют собой невидимое
электромагнитное излучение с длиной
волны 105 - 102 нм. Рентгеновские лучи
могут проникать через
Гамма-излучение, гамма-лучи (γ-лучи) — вид электромагнитного излучения с чрезвычайно маленькой длиной волны — < 5×10−3 нм и вследствие этого ярко выраженными корпускулярными и слабо выраженными волновыми свойствами. Гамма-квантами являются фотоны высокой энергии. Энергия квантов гамма-излучения превышают 105 эВ, хотя резкая граница между гамма- и рентгеновским излучением не определена. На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению, если при взаимодействиях электронов или при переходах в атомной электронной оболочке — то к рентгеновскому излучению. Очевидно, физически кванты электромагнитного излучения с одинаковой энергией не отличаются, поэтому такое разделение условно.
Гамма-излучение
испускается при переходах между
возбуждёнными состояниями атомных ядер (энергии таких гамма-квантов
лежат в диапазоне от ~1 кэВ до десятков
МэВ), при ядерных
реакциях (например,
при аннигиляции электрона и позитрона,
распаде нейтрального пиона и т.д.), а также при отклонении
энергичных заряженных частиц в магнитных
и электрических полях.
Рисунок
5 – Гамма-излучения
Гамма-лучи в отличие от α-лучей и β-лучей не отклоняются электрическими и магнитными полями и характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма-кванты вызывают ионизацию атомов вещества. Основные процессы, возникающие при прохождении гамма-излучения через вещество:
Гамма-кванты, как и любые другие фотоны, могут быть поляризованы.
Гамма-излучения применяются в следующих областях:
Облучение гамма-квантами, в зависимости от дозы и продолжительности, может вызвать хроническую и острую лучевую болезнь. Стохастические эффекты облучения включают различные виды онкологических заболеваний. В то же время гамма-облучение подавляет рост раковых и других быстро делящихся клеток. Гамма-излучение является мутагенным и тератогенным фактором.
Защитой
от гамма-излучения может служить
слой вещества. Эффективность защиты
(то есть вероятность поглощения гамма-кванта
при прохождении через неё) увеличивается
при увеличении толщины слоя, плотности
вещества и содержания в нём тяжёлых ядер
(свинца, вольфрама, обеднённого урана
и пр.).