Экология

Автор работы: Пользователь скрыл имя, 17 Января 2011 в 01:52, реферат

Описание работы

Своими корнями экология уходит в биологические науки; как самостоятельная естественнонаучная дисциплина она выделилась только с начала ХХ в., после того, как были накоплены сведения о многообразии живых организмов на Земле, об особенностях их образа жизни. Возникло понимание, что не только строение и развитие организмов, но и взаимоотношения их со средой обитания подчинены определенным закономерностям, которые заслуживают специального и тщательного изучения. С середины пятидесятых годов ее значение и сферы приложения стали значительно расширяться, и современную экологию можно охарактеризовать как междисциплинарную область, развивающуюся на стыке физики, химии, биологии, почвоведения, гидрологии, а также различных социальных дисциплин.

Содержание работы

1.Краткая история предмета экология…………………………………3
2.Абиотические факторы среды………………………………………..4
3.Энергия в экологических системах. Жизнь как термодинамический процесс…………………………………………………………………7
4.Учение В.И. Вернадского о биосфере……………………………….11
5.Круговорот углерода и азота………………………………………...14
6.Экологическая проблема Тульской области –Доклад СэС…………18
7.Концепция устойчивого развития…………………………………….21
8.Основные промышленные методы очистки отходящих газов от вредных и ценных компонентов………………………………………22
9.Нормирование качества окружающей среды. Плата за загрязнение окружающей среды……………………………………………………..25
10.Международное сотрудничество в области окружающей среды……28
11.Список литературы……………………………………………………..30

Файлы: 1 файл

курсовая.doc

— 156.50 Кб (Скачать файл)

Для описания свойств биологических систем целесообразно  применение термодинамики необратимых  процессов, которая рассматривает ход процессов во времени (основатели лауреаты Нобелевской премии по химии Л. Онзегер и И. Пригожий). Фундаментальным понятием термодинамики необратимых процессов является стационарное состояние системы. Процесс жизнедеятельности биообъектов сопровождается непрерывно идущими биологическими процессами, выделяя в определенный период времени доминирующий (или тот же, измененный по времени) процесс.

В биологических  системах наиболее важными потоками являются потоки вещества и электрических зарядов. Когда по каким-либо причинам стационарность потоков нарушается, то есть нарушается проницаемость мембраны, возникает диодный эффект, при этом изменяется фр., возникает ощущение боли (новое стационарное состояние). В медицинской практике ряд заболеваний, связанных с нарушением стационарности ионного обмена (радикулит, отложение солей и др.), эффективно лечится электротерапевтическими методами.

В общем  случае основным свойством живых  систем является наличие разности потенциалов  на мембранах клеток. Незначительные изменения потенциала сопровождаются четко выраженными физиологическими изменениями: нервным импульсом, транспортом ионов через мембрану, сокращением мышечной ткани и др. Длительное нарушение целостности мембраны всегда ведет к патологии, а выравнивание потенциала означает смерть клетки.

      Таким образом, важнейшая термодинамическая  характеристика организмов, экосистем  и биосферы в целом - способность  создавать и поддерживать высокую  степень внутренней упорядоченности, то есть неуравновешенное состояние с низкой энтропией (с окружающей средой, но неустойчивое равновесие для самого индивида). Для поддержания внутренней упорядоченности в системе, находящейся при температуре выше абсолютного нуля, когда существует тепловое движение атомов и молекул, необходима постоянная работа по откачиванию "неупорядоченности". Эта работа предполагает постоянно действующий источник энергии и наличие хорошо развитых "диссипативных структур" у самой системы. Низкая энтропия достигается постоянным и эффективным рассеянием легко используемой концентрированной энергии (например, энергии света, горючего, пищи) и превращением ее в энергию, используемую с трудом (например, в тепловую). Дыхание высокоупорядоченной биомассы можно рассматривать как диссипативную структуру экосистемы. Это затрата энергии на поддержание жизнедеятельности.

      Итак, экосистемы и организмы  представляют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей средой энергией и веществом, уменьшая этим энтропию внутри себя, но увеличивая энтропию вовне в согласии с законами термодинамики.  

      4. Учение В.И. Вернадского  о биосфере.

      Представление о биосфере как общепланетарной  оболочке, охватывающей толщу тропосферы, гидросферы, осадочных (и возможно гранитных) пород литосферы, в ходе всей геологической истории Земли; как глобальной единой системе Земли, где весь основной ход геохимических и энергетических превращений определяется жизнью, было разработано в трудах В.И.Вернадского. Вернадский впервые указал на активную преобразующую деятельность древних и современных организмов в изменении облика нашей планеты. Грандиозные масштабы этого процесса позволили ему развить учение о космической роли жизни в геологической истории Земли, что, несомненно, дает право считать его основателем учения о биосфере.

      Биосферой Вернадский назвал ту область нашей  планеты, в которой существует или когда-либо существовала жизнь и которая постоянно подвергается или подвергалась воздействию живых организмов.

      Участие каждого отдельного организма в геологической истории Земли ничтожно мало. Однако живых существ на Земле бесконечно много, они обладают высоким потенциалом размножения, активно взаимодействуют со средой обитания и, в конечном счете, представляют в своей совокупности особый, глобальных масштабов фактор, преобразующий верхние оболочки Земли.

      Значение  организмов обусловлено их большим разнообразием, повсеместным распространением, длительностью существования в истории Земли, избирательным характером биохимической деятельности и исключительно высокой химической активностью по сравнению с другими компонентами природы.

      Современная жизнь распространена в верхней  части земной коры (литосфере), в нижних слоях воздушной оболочки Земли (атмосфере) и в водной оболочке Земли (гидросфере). Для обозначения совокупности всего живого на Земле вместе с его непосредственным окружением и ресурсами введем термин "современная биосфера" или "экосфера".

      Экосфера  непрерывной оболочкой одевает земной шар, а ее протяженность по вертикали меняется от долей метра - в областях чрезвычайно скудной жизни (арктические и антарктические пустыни) - до тысяч метров. Нижняя граница экосферы ограничена, прежде всего, температурой горных пород и подземных вод, которая постепенно возрастает с глубиной и на уровне 1,5 - 15 км уже превышает 100°С. Поэтому вглубь Земли живые организмы проникают на небольшое расстояние. Самая большая глубина, на которой в породах земной коры были обнаружены бактерии, составляет 4 км. В нефтяных месторождениях на глубине 2 - 2,5 км бактерии регистрируются в значительном количестве. В океане жизнь распространена до более значительных глубин и встречается даже на дне океанических впадин в 10 - 11 км от поверхности, так как температура там, около 0°С. Однако по Вернадскому нижнюю границу биосферы следует проводить еще глубже. Постепенно накапливающиеся в океане гигантские толщи осадочных пород, происхождение которых связано с деятельностью живых существ - это тоже часть биосферы. В соответствии с динамическими процессами в земной коре осадочные породы постепенно вовлекаются в глубь ее, метаморфизируясь под действием высоких температуры и давления. Метаморфические породы земной коры, происходящие из осадочных, в конечном итоге также производные жизни.

      Верхняя граница жизни в атмосфере определяется нарастанием с высотой ультрафиолетовой радиации. На высоте 25 - 27 км большую часть ультрафиолетового излучения Солнца поглощает находящийся здесь тонкий слой озона - озоновый экран. Все живое, поднимающееся выше защитного слоя озона, погибает. Атмосфера же над поверхностью Земли насыщена многообразными живыми организмами. Споры бактерий и грибов обнаруживают до высоты 20 - 22 км, но основная часть аэропланктона сосредоточена в слое до 1-1,5 км.

      Хотя  процессы жизнедеятельности современных  организмов сосредоточены только в экосфере, влияние живого вещества (современного или существовавшего в прошлом) ощущается далеко за ее пределами. Именно поэтому биосфера Вернадского (как область существования всех былых экосфер) простирается далеко за пределы современной экосферы, охватывая по вертикали слой толщиной 40 - 50 км.

      Приблизительная масса биосферы составляет 0,05% массы Земли, а ее объем 0,4% объема планеты.

      Структура биосферы представляет собой сложную  многокомпонентную систему - совокупность газообразной, жидкой, твердой и биологической организаций. Она характеризуется строгой организованностью, биологическим равновесием численности и взаимной адаптированностью составляющих ее организмов.

      Вернадский подчеркивал, что биосферу нужно рассматривать как целостную геологическую оболочку Земли, весьма сложную саморегулирующуюся систему, состоящую из живого вещества и неживой материи.

      Всю совокупность организмов на планете Вернадский назвал живым веществом.

      Косное  вещество, по Вернадскому, это совокупность тех веществ в биосфере, в образовании которых живые организмы не участвуют - т.е. горные породы магматического, неорганического происхождения, видоизмененные живыми организмами вещества космического происхождения, космическая пыль, метеориты.

      Биогенное вещество создается и перерабатывается жизнью, совокупностями живых организмов. Это источник чрезвычайно мощной потенциальной энергии (каменный уголь, гумус почв, нефть, битумы, торф и т.п.). После образования биогенного вещества живые организмы в нем малодеятельны.

      Особой  категорией является биокосное вещество. Вернадский определял, что оно "создается в биосфере одновременно живыми организмами и косными процессами, представляя системы динамического равновесия тех и других". Организмы в биокосном веществе играют ведущую роль. Биокосное вещество планеты - это почвы, кора выветривания, все природные воды, свойства которых зависят от деятельности на Земле живого вещества.

        Биосфера, таким образом, это та область Земли, которая охвачена влиянием живого вещества. С современных позиций биосферу рассматривают как наиболее крупную экосистему планеты, поддерживающую глобальный круговорот веществ. 

      5.Глобальный  круговорот углерода  и азота.

      Круговорот  углерода:

      В биологическом круговороте углерода участвуют только органические соединения и диоксид углерода; фотосинтез и дыхание полностью комплементарны. Весь ассимилированный в процессе фотосинтеза углерод включается в углеводы, а в процессе дыхания углерод, содержащийся в органических соединениях, превращается в диоксид углерода.

      В круговороте СО2 атмосферный фонд очень невелик (0,035% атм.), в сравнении с запасами углерода в океанах, в ископаемом топливе и других резервуарах земной коры. Полагают, что до наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы.

      В основе этого баланса лежит регулирующая деятельность зеленых растений и  поглощающая способность карбонатной системы моря. Низкое содержание СО2, также как высокие концентрации О2 служат лимитирующими факторами для фотосинтеза: для большинства растений характерно увеличение интенсивности фотосинтеза, если в эксперименте увеличивается содержание CО2 или понижается содержание О2. Таким образом, зеленые растения оказываются весьма чувствительным регулятором содержания этих газов.

      Фотосинтезирующий "зеленый пояс" Земли и карбонатная система моря поддерживают постоянный уровень содержания СО2 в атмосфере. Но в последнем столетии стремительно возрастающее потребление горючих ископаемых вместе с уменьшением поглотительной способности "зеленого пояса" начинает превосходить возможности природного контроля, так что содержание СО2 в атмосфере, сейчас постепенно возрастает. Если концентрация вдвое превысит доиндустриальный уровень, что может случиться к середине будущего века, вероятно потепление климата Земли: температура в среднем повысится на 1,5 - 4,5 °С, и это наряду с подъемом уровня моря (в результате таяния полярных шапок) и изменением распределения осадков может погубить сельское хозяйство.

      Основным источником поступления "парникового газа" СО2 считается сжигание горючих ископаемых, однако свой вклад вносят также развитие сельского хозяйства и сведение лесов. Может показаться удивительным, что сельское хозяйство в конечном счете приводит к потере СО2 из почвы (то есть вносит в атмосферу больше, чем забирает оттуда), но дело в том, что фиксация СО2 сельскохозяйственными культурами, многие из которых активны лишь часть года, не компенсирует количества СО2, высвобождающееся из почвы, особенно в результате частой вспашки. Леса - важные накопители углерода, так как в биомассе лесов содержится в 1,5 раза, а в лесном гумусе - в 4 раза больше углерода, чем в атмосфере. Сведение леса, разумеется, может высвободить углерод, накопленный в древесине, особенно если она немедленно сжигается. Уничтожение леса, особенно при последующем использовании этих земель для сельского хозяйства или строительства городов, приводит к окислению гумуса.

      Круговорот  азота - Воздух, на 78,08% состоящий из азота, представляет собой крупнейший "резервуар" и одновременно "предохранительный клапан" системы. Азот постоянно поступает в атмосферу благодаря деятельности денитрифицирующих бактерий и постоянно возвращается в круговорот в результате деятельности азотфиксирующих бактерий или водорослей (биологическая фиксация азота), а также действию электрических разрядов - молний и других физических процессов, в которых происходит фиксация азота.

      Путь  прохождения азота через экосистему отличается от пути углерода и кислорода в нескольких важных аспектах. Во-первых, большинство организмов не могут ассимилировать азот из огромного его фонда (3,85*1021 г N2), имеющегося в атмосфере. Во-вторых, азот не принимает непосредственного участия в высвобождении химической энергии при дыхании: главная его роль сводится к тому, что он входит в состав белков и нуклеиновых кислот, которые создают структуру биологических систем и регулируют их функционирование. В-третьих, биологическое разложение азотсодержащих органических соединений до неорганических форм слагается из нескольких стадий, и некоторые из этих стадий могут осуществляться только специализированными бактериями. В-четвертых, большая часть биохимических превращений, участвующих в разложении азотсодержащих соединений, происходит в почве, где доступность азота растениям облегчается растворимостью его неорганических соединений.

      Наиболее  важные процессы в круговороте азота - это распад органических азотсодержащих соединений в результате аммонификации и нитрификации, восстановление нитратов и нитритов до молекулярного азота (N2) в результате денитрификации и его высвобождение в атмосферу, а также процесс биологической ассимиляции атмосферного азота путем его фиксации. 

      В органических соединениях азот обычно представлен амино -  или какой-либо родственной группой, входящей в состав той или иной органической молекулы. У животных выведение из организма избыточного азота происходит путем отщепления аминов от органических соединений и выделения их в сравнительно неизменной форме, главным образом, в виде аммиака (NН3) или мочевины СО(NH2)2. Почвенные микроорганизмы легко превращают мочевину в аммиак путем гидролиза:

      СО(NH2)2     + H2®   2 (NН3)  +  CO2

Информация о работе Экология