Экология

Автор работы: Пользователь скрыл имя, 17 Января 2011 в 01:52, реферат

Описание работы

Своими корнями экология уходит в биологические науки; как самостоятельная естественнонаучная дисциплина она выделилась только с начала ХХ в., после того, как были накоплены сведения о многообразии живых организмов на Земле, об особенностях их образа жизни. Возникло понимание, что не только строение и развитие организмов, но и взаимоотношения их со средой обитания подчинены определенным закономерностям, которые заслуживают специального и тщательного изучения. С середины пятидесятых годов ее значение и сферы приложения стали значительно расширяться, и современную экологию можно охарактеризовать как междисциплинарную область, развивающуюся на стыке физики, химии, биологии, почвоведения, гидрологии, а также различных социальных дисциплин.

Содержание работы

1.Краткая история предмета экология…………………………………3
2.Абиотические факторы среды………………………………………..4
3.Энергия в экологических системах. Жизнь как термодинамический процесс…………………………………………………………………7
4.Учение В.И. Вернадского о биосфере……………………………….11
5.Круговорот углерода и азота………………………………………...14
6.Экологическая проблема Тульской области –Доклад СэС…………18
7.Концепция устойчивого развития…………………………………….21
8.Основные промышленные методы очистки отходящих газов от вредных и ценных компонентов………………………………………22
9.Нормирование качества окружающей среды. Плата за загрязнение окружающей среды……………………………………………………..25
10.Международное сотрудничество в области окружающей среды……28
11.Список литературы……………………………………………………..30

Файлы: 1 файл

курсовая.doc

— 156.50 Кб (Скачать файл)

    Федеральное агентство по образованию

    ГОУ ВПО « Тульский государственный  университет»

Кафедра: « Аэрологии, охраны труда и окружающей среды» 
 
 

    Реферат

по дисциплине: «Экология» 
 
 
 
 
 
 

. 

    Тула, 2009г

          Содержание:

  1. Краткая история предмета экология…………………………………3
  2. Абиотические факторы среды………………………………………..4
  3. Энергия в экологических системах. Жизнь как термодинамический процесс…………………………………………………………………7
  4. Учение В.И. Вернадского о биосфере……………………………….11
  5. Круговорот углерода и азота………………………………………...14
  6. Экологическая проблема Тульской области –Доклад СэС…………18
  7. Концепция устойчивого развития…………………………………….21
  8. Основные промышленные методы очистки отходящих газов от вредных и ценных компонентов………………………………………22
  9. Нормирование качества окружающей среды. Плата за загрязнение окружающей среды……………………………………………………..25
  10. Международное сотрудничество в области окружающей среды……28

    11.Список  литературы……………………………………………………..30 
 
 
 
 
 
 
 
 
 
 
 

1. Краткая история предмета экологии.

Экология - это наука о взаимоотношениях живых существ между собой и с окружающей средой, о связях в надорганизменных системах, о структуре и функционировании этих систем.

    Термин "экология" был впервые введен немецким биологом Эрнстом Геккелем в 1869 г.; он образован из двух греческих слов: oikos, что значит дом или жилище, и logos - изучение или наука. Таким образом, буквально "экология" означает нечто вроде науки о "природном доме", о всех его обитателях, о совокупности и характере связей между организмами и окружающей их физической средой, а также тех функциональных процессах, которые делают этот дом пригодным для жизни.

    Своими  корнями экология уходит в биологические  науки; как самостоятельная естественнонаучная дисциплина она выделилась только с  начала ХХ в., после того, как были накоплены сведения о многообразии живых организмов на Земле, об особенностях их образа жизни. Возникло понимание, что не только строение и развитие организмов, но и взаимоотношения их со средой обитания подчинены определенным закономерностям, которые заслуживают специального и тщательного изучения. С середины пятидесятых годов ее значение и сферы приложения стали значительно расширяться, и современную экологию можно охарактеризовать как междисциплинарную область, развивающуюся на стыке физики, химии, биологии, почвоведения, гидрологии, а также различных социальных дисциплин.

    Как и большинство наук, экология имеет  длительную предысторию. Ее обособление представляет собой естественный этап роста научных знаний о природе. Выделившись в системе других естественных наук, экология и сейчас продолжает развиваться, обогащая свое содержание и расширяя задачи. Современная экология является теоретической основой рационального природопользования, ей принадлежит ведущая роль в разработке стратегии взаимоотношений природы и человеческого общества.

2. Абиотические факторы среды

Абиотические  факторы, т.е. свойства неживой природы, которые прямо или косвенно влияют на живые организмы, подразделяется на эдафические (почвенные), климатические, топографические и другие физические факторы, в том числе воздействие волн, морских течений и огня.

Климатические факторы внешней среды:

Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение.

      Любой организм способен жить в пределах определенного диапазона температур. Температура, как впрочем, и интенсивность света, в большой мере зависит от географической широты, сезона, времени суток и экспозиции склона. Однако встречаются и узколокальные различия в температуре; это в особенности касается микроместообитаний, обладающих собственным микроклиматом. Растительность тоже оказывает некоторое влияние на температуру. Например, иная температура бывает под пологом леса или в меньшей степени внутри отдельных групп растений, а также под листьями отдельного растения.

Таким образом, температура является важным и часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных. Температура часто создает зональность и стратификацию в водных и наземных местообитаниях.

      Излучение: Свет - основной источник энергии на Земле. Природа света двойственна: с одной стороны он представляет собой поток элементарных физических частиц - корпускул, или фотонов, не имеющих заряда, с другой - обладает волновыми свойствами. Чем меньше длина волны фотона, тем выше его энергия, и наоборот. Энергия фотонов служит источником обеспечения энергетических потребностей растений при фотосинтезе, поэтому зеленое растение не может существовать без света. 
Свет (освещенность) представляет собой мощный стимул активности организмов - фотопериодизма в жизни растений (рост, цветение, опадание листвы) и животных (линька, накопление жира, миграции и размножение птиц и млекопитающих, наступление стадии покоя - диапаузы, поведенческие реакции и др.). Продолжительность светового дня зависит от географической широты..

Вода. Энергией Солнца вода поднимается с поверхности морей и океанов и возвращается на Землю в виде разнообразных осадков, оказывая разностороннее влияние на организмы. Вода - важнейший компонент клетки, на ее долю приходится 60-80% ее массы. Биологическое значение воды обусловлено ее физико-химическими свойствами. Молекула воды полярна, поэтому она способна притягиваться к различным другим молекулам и ослаблять интенсивность взаимодействия между зарядами этих молекул, образуя с ними гидраты, т. е. выступать в качестве растворителя. Многие, вещества вступают в разнообразные химические реакции только в присутствии воды. Диэлектрические свойства, наличие связей между молекулами обусловливают большую теплоемкость воды, что создает в живых системах "тепловой буфер", предохраняя неустойчивые структуры клетки от повреждения при местном кратковременном освобождении тепловой энергии. Поглощая тепло при переходе из жидкого в газообразное состояние, вода производит охлаждающий; эффект испарения, используемый организмами для регуляции температуры тела. Благодаря большой теплоемкости вода играет роль основного терморегулятора климата. Ее медленное нагревание и охлаждение регулируют колебания температуры океанов и озер: летом и днем в них накапливается тепло, которое они отдают зимой и ночью. Стабилизации климата способствует также постоянный обмен диоксидом углерода между воздушной и водной оболочками земного шара и горными породами, а также растительным и животным миром 
В зависимости в водной среде (стрелолист, элодея, роголистник). Недостаток влаги служит ограничивающим фактором, определяющим границы жизни и ее зональное распределение. При недостатке воды у животных и растений вырабатываются приспособления к ее добыванию и сохранению. 
Ионизирующее излучение. Излучение с очень высокой энергией, которое способно приводить к образованию пар положительных и отрицательных ионов, называется ионизирующим. Его источником являются радиоактивные вещества, содержащиеся в горных породах; кроме того, оно поступает из космоса. Из трех видов ионизирующего излучения, имеющих важное экологическое значение, два представляют собой корпускулярное излучение (альфа - и бета-частицы), а третье - электромагнитное (гамма-излучение и близкое ему рентгеновское излучение). Гамма-излучение легко проникает в живые ткани; это излучение может пройти сквозь организм, не оказав никакого воздействия, или же может вызвать ионизацию на большом отрезке своего пути. В целом ионизирующее излучение оказывает на более высокоразвитые и сложные организмы наиболее губительное действие.

Загрязняющие вещества. Эти вещества можно разделить на две группы: природные соединения, являющиеся отходами технологических процессов, и искусственные соединения, не встречающиеся в природе. 
К 1-й группе относятся сернистый ангидрид, углекислый газ, оксиды азота, углерода, углеводороды, соединения меди, цинка и ртути и др., минеральные удобрения. 
Во 2-ю группу входят искусственные вещества, обладающие специальными свойствами, удовлетворяющими потребности человека: пестициды, используемые для борьбы с животными-вредителями сельскохозяйственных культур, антибиотики, применяемые в медицине и ветеринарии для лечения инфекционных заболеваний. К пестицидам относятся инсектициды - средства для борьбы с вредными насекомыми и гербициды - средства для борьбы с сорняками. 
Все они обладают определенной токсичностью (ядовитостью) для человека. 
К абиотическим факторам относятся также атмосферные газы, минеральные вещества, барометрическое давление, движение воздушных масс и гидросферы (течение), минеральная основа почвы, соленость воды и почвы.

    3. Энергия в экологических системах. Жизнь как термодинамический процесс.

Экосистема  — основная функциональная единица в экологии, единый природный комплекс, образованный живыми организмами и средой их обитания (атмосфера, почва, водоемы), в которой живые и неживые компоненты связаны между собой обменом веществ и энергии.

Жизнедеятельность всех живых организмов, включая человека, представляет собой работу, для осуществления которой требуется энергия.

Когда излучение поглощается каким-либо предметом, последний нагревается, то есть энергия излучения переходит  в энергию движения молекул, из которых  состоит тело, причем, это касается любых физических полей и сред, взаимодействующих с ними. В частности, солнечное излучение сушей и водой поглощается по-разному, в результате возникают теплые и холодные области, что в свою очередь служит причиной образования воздушных потоков, которые, например, могут вращать ветряные двигатели и выполнять другую работу. Таким образом, «потребленная» энергия на самом деле не расходуется, она только переводится из состояния, в котором ее легко превратить в работу, в состояние с малой возможностью использования.

Если  температура какого-либо тела выше температуры окружающего воздуха, то тело будет отдавать тепло до тех пор, пока его температура  не сравняется с температурой окружающей среды, после чего наступает состояние  термодинамического равновесия и дальнейшее рассеяние энергии в тепловой форме прекращается. Такая система находится в состоянии максимальной энтропии. Энтропия отражает возможности превращения энергии и рассматривается как мера неупорядоченности системы.

Понятие энтропии как показателя термодинамической искаженной энергии имеет большое значение не только в физике, химии, биологии, но и в экологии для решения проблем, связанных с изменением состояния окружающей среды. Энтропия показывает, что тот или иной процесс может происходить в системе с определенной вероятностью. При этом если система стремится к равновесному состоянию, энтропия увеличивается и стремится к максимуму.

Применяя  положения термодинамики к процессу жизнедеятельности, можно отметить, что живой организм извлекает энергию из пищи, используя упорядоченность ее химических связей. Часть энергии идет на поддержание жизненных процессов, часть передается организмам последующих пищевых уровней. В начале этого процесса находится фотосинтез, при котором повышается упорядоченность деградировавших органических и минеральных веществ. При этом энтропия уменьшается за счет поступления энергии от Солнца.

Само  существование биосферы можно рассматривать  как стационарный процесс, реализуемый  на фоне грандиозного необратимого процесса охлаждения Солнца. Если возникновение биологической структуры можно представить двумя стадиями: биосинтезом составляющих элементов (макромолекул, клеток) и сборкой из них организованной системы, то процесс сборки находится в значительной степени под термодинамическим контролем, поскольку на молекулярном уровне система стремится к состоянию с наименьшим химическим потенциалом. Самоорганизация и эволюция биологических систем на всех уровнях, начиная с клетки и кончая биосферой в целом, происходят вследствие оттока энтропии в окружающую среду.

Согласно  второму началу термодинамики, энергия  любой системы стремится к  уменьшению, то есть к термодинамическому равновесию, что равнозначно максимальной энтропии. В такое состояние живой  организм перейдет, если лишить его возможности извлекать упорядоченность (энергию) из окружающей среды. Закон энтропии универсален и безграничен и гласит, что утратившая чувство гармонии любая структура немедленно поглощается живой природой.

Методы  термодинамики применимы только к макроскопическим системам, состоящим из большого числа частиц. Система, которая не может обмениваться со средой ни энергией, ни веществом, является изолированной (камни, шлаки); если происходит обмен только энергией, то система называется замкнутой (теплообменники); а если и энергией, и веществами открытой (биообъекты).

При применении термодинамики к биологическим  системам необходимо учитывать особенности  организации живых систем: 
1) биологические системы открыты для потоков вещества и энергии; 
2) процессы в живых системах, в конечном счете, имеют необратимый характер; 
3) живые системы далеки от равновесия; 
4) биологические системы гетерофазны и структурированы.

Информация о работе Экология