Природопользование отчужденных территорий подвеоженных радиоактивному загрязнению

Автор работы: Пользователь скрыл имя, 09 Февраля 2011 в 14:15, курсовая работа

Описание работы

Целью нашего исследования является изучение природопользования отчужденных территорий подверженных радиационному загрязнению Республики Беларусь.

Для достижения данной цели, необходимо решение следующих задач: 1) изучить литературу по проблеме исследования; 2) описать отчужденные территории, подвергшиеся радиационному загрязнению; 3) изучить природопользование отчужденных территорий подверженных радиационному загрязнению Республики Беларусь.

Содержание работы

ВВЕДЕНИЕ………………………………………………………………………....4


ГЛАВА 1. ОБЗОР ЛИТЕРАТУРЫ……………………………………………….6

1.Природные территории на момент аварии 1986 г………………………6
2.Ликвидация последствий аварии на ЧАЭС……………………………...9
3.Чернобыльская зона отчуждения………………………………………..11
4.Оценка состояния отчужденных территорий подверженных
радиационному загрязнению…………………………………………………….13

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ………………...20

2.1. Методика проведения измерений удельной и объемной

активности радионуклидов цезия–137 по гамма–излучению

радиометром РКГ–01А в пробах почвы……………………………………….21

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ АНАЛИЗ…………....25


ЗАКЛЮЧЕНИЕ………………………………………………………………..…37


БИЛИОГРАФИЧЕСКИЙ СПИСОК……………………………………….….39

Файлы: 1 файл

к.р 1.doc

— 189.50 Кб (Скачать файл)

      За  время прошедшее со времени возведения объекта «Укрытие», техническое  состояние конструкционных элементов  этого объекта ухудшилось из–за коррозии, вызываемой влагой. Основная потенциальная опасность для объекта «Укрытие» – это возможное разрушение конструкций верхней части и выход радиоактивной пыли в окружающую среду.

      На  сегодняшний день, чтобы избежать возможного разрушения объекта «Укрытие», планируются меры по укреплению нестабильных конструкций. Кроме того, существующий объект «Укрытие» планируется накрыть новым безопасным конфайнментом (НБК), который будет иметь срок службы более 100 лет. Как ожидается, сооружение НБК позволит демонтировать существующий объект «Укрытие», удалить из 4–го блока высокорадиоактивные топливосодержащие  массы и в конечном итоге выполнить работы по выводу разрушенного реактора из эксплуатации. При проведении аварийно–восстановительных работ, как на площадке Чернобыльской АЭС, так и вблизи нее образовались большие количества радиоактивных отходов, которые были размещены во временных приповерхностных хранилищах отходов и в установках для захоронения. В период 1986–1987 годов на расстояниях от 0,5 до 1,5 км от площадки реактора были созданы траншейные и насыпные могильники, с тем чтобы избежать распространения пыли, снизить уровни радиации и улучшить условия работы на 4–м энергоблоке и вблизи него. Эти могильники были созданы без надлежащей проектной документации и инженерно– технических барьеров, и они не удовлетворяют современным требованиям безопасности отходов. За годы, прошедшие после аварии, были израсходованы значительные средства на проведение систематического анализа и выработку приемлемой стратегии обращения с имеющимися радиоактивными отходами. Однако до настоящего времени еще не выработано общеприемлемой стратегии обращения с радиоактивными отходами на Чернобыльской АЭС и в зоне отчуждения, и особенно в отношении высокоактивных и содержащих долгоживущие радионуклиды отходов. Можно ожидать, что в предстоящие годы в связи с проведением работ по сооружению НБК, возможному демонтажу объекта «Укрытие», удалению ТСМ и выводу из эксплуатации 4–го энергоблока образуются дополнительные количества радиоактивных отходов [2].

      1.3. Чернобыльская зона  отчуждения

      Чернобыльская зона отчуждения, возникла в результате проведения мероприятий по ликвидации последствий аварии. В качестве условной границы ее территории была принята  изолиния мощности экспозиционной дозы g–излучения 0,05 мР/ч на 10 июня 1986г, т.е. 5–10–кратное увеличение естественного фона. Контур загрязненной территории имел три отчетливые ветви радиоактивного следа – северную, южную и западную, которые накрывали южные районы Белоруссии, западную часть Брянской области, северные и центральные районы Украины. В пределах указанной зоны радиационное воздействие катастрофы на человека и окружающую среду достигло максимальных (наиболее опасных) значений. Поэтому, в несколько этапов, с территории Чернобыльской зоны отчуждения, была произведена эвакуация населения, прекращена хозяйственная деятельность, закрыты промышленные и сельскохозяйственные предприятия. Некоторые, наиболее загрязненные, села были разрушены и захоронены.

      На  территории Зоны отчуждении было определено три контролируемых территории: особая зона (непосредственно промплощадка ЧАЭС), 10–километровая зона, 30–километровая зона [22]. Официальное название территорий, которые окружают Чернобыльскую АЭС и на которых запрещено постоянное проживание населения называется – Чернобыльская зона отчуждения и зона безусловного (обязательного) отселения. Необходимо отметить, что условия пребывания человека и его деятельность на территории Чернобыльской зоны отчуждения оговорено Законами. Земли зон отчуждения и безусловного (обязательного) отселения выведены из хозяйственного оборота, ограждены от соседних территорий и переведены в категорию радиационно-опасных земель. Законодательная трактовка термина радиационно-опасные земли, следующая: это земли, на которых невозможно дальнейшее проживание населения, получение сельскохозяйственной и другой продукции и продуктов питания, которые бы соответствовали республиканским и международных допустимым уровням содержания радиоактивных веществ, или которые нецелесообразно использовать за экологическими условиями. В пределах радиоактивно–загрязненных территорий (зоны отчуждения) осуществляется ряд работ по недопущению распространения радиоактивных загрязнений за пределы зоны отчуждения и поступления радионуклидов в основные, близ лежащие водоемы [26].

      В настоящее время в зоне отчуждения, в особой зоне, продолжается дезактивация наиболее загрязнённых участков [21].

      В 1988 г. в соответствии с постановлением Совета Министров республики № 485 от 18 июля на площади 131,3 тыс. га белорусского сектора 30–километровой зоны ЧАЭС был создан Полесский государственный радиационно-экологический заповедник (ПГРЭЗ). Гомельский облисполком (решение № 71 от 3.03.93 г.) передал в состав заповедника сопредельные с ним загрязненные земли Брагинского, Хойникского и Наровлянского районов. В результате площадь Полесского заповедника возросла до 215,5 тыс. га, с него отселены 22 тысячи жителей и находятся 96 покинутых населённых пунктов. Административный центр ПГРЭЗ расположен в г. Хойники. Заповедник создан с целью ведения радиационно–экологического мониторинга, радиобиологических исследований, поиска возможных путей использования территории, с которой были отселены жители и остановлена хозяйственная деятельность, а также для сохранения генофонда и видового разнообразия местной флоры и фауны [19].

      В последующий период, включая настоящее время и обозримое будущее, радиоэкологическая обстановка в республике, в том числе и на отчужденных территориях, определяется «долгоживущими» изотопами. Альфа–, бета– и гамма–излучающие радионуклиды присутствуют практически во всех компонентах экосистем, вовлечены в геохимические и трофические циклы миграции. И эта ситуация, по данным прогнозов Республиканского центра радиационного контроля и мониторинга природной среды, в будущем изменится незначительно [21].

      Чернобыльская катастрофа оказала воздействие на все сферы жизнедеятельности человека – производство, культуру, науку, экономику и др. Из сельскохозяйственного оборота выведено 2,64 тыс. кв. км сельхозугодий. Ликвидировано 54 колхоза и совхоза, закрыто 9 заводов перерабатывающей промышленности агропромышленного комплекса. Резко сократились посевные площади и валовой сбор сельскохозяйственных культур, существенно уменьшилось поголовье скота. Значительно уменьшены размеры пользования минерально-сырьевыми ресурсами. Из пользования выведено 22 месторождения. Большой урон нанесен лесному хозяйству. Ежегодные потери древесных ресурсов превышают в настоящее время 2 млн. кубических метров [19].

      1.4. Оценка состояния  отчужденных территорий  подверженных радиационному  загрязнению

      Одним из главных методов оценки состояния отчужденных территорий подверженных радиационному загрязнению является радиационный мониторинг.

      Понятие «мониторинг» сформировал Ю.А. Израэль  при создании и разработке функционирующих  сетей экологического мониторинга  в СССР в системе Гидрометслужбы в начале 70–х гг [6]. Радиационный мониторинг – это система длительных регулярных наблюдений с целью оценки состояния радиационной обстановки, а также прогноза изменения ее в будущем [8].

      Радиационный  мониторинг проводится для установления полей загрязнения, с целью наблюдения за естественным радиационным фоном; радиационным фоном в районах воздействия потенциальных источников радиоактивного загрязнения, в том числе для оценки трансграничного переноса радиоактивных веществ; радиоактивным загрязнением атмосферного воздуха, почвы, поверхностных вод на территориях, подвергшихся радиоактивному загрязнению в результате катастрофы на Чернобыльской АЭС [9].

      Радиационный  мониторинг является составной частью общеэкологического мониторинга, он состоит из трех частей: наблюдения, анализа и прогноза.

      Существует  два направления радиационного  мониторинга:

      1) Дистанционные способы мониторинга  – аэро– и наземная гамма–съемки, высокомобильные, требующие участия  высококвалифицированных кадров, развивались  и осуществлялись на базе научно–исследовательских организаций.

      2) Сетевые наблюдения внедрялись  как составная часть Общегосударственной  службы контроля за уровнем  загрязнения внешней среды по  территории всей страны.

      Мониторинг  обеспечивает изучение пространственно–временного распределения различных явлений. Пространственные закономерности могут меняться во времени, поэтому заложенные первоначально сети мониторинга могут изменяться.

      Сети  радиационного мониторинга, представляют собой маршруты, секущие следы  радиоактивных выпадений, происшедших после ядерных испытаний, либо радиальные сети вокруг источника выброса.

      Так, после аварии на Чернобыльской АЭС  съемки ближней зоны проводились  в масштабах более 1:100.000 (межмаршрутные  расстояния – менее 1 км), съемки областей, где прошли основные следы – в масштабе 1:200.000 (2 км), съемки территорий с уровнями,  близкими к глобальным, 1:10.000.000 (10 км). Дистанционные данные никогда не используются сами по себе, а всегда сопровождаются наземной проверкой в виде разреженного отбора проб на площади аэро–гамма–съемки.

      Если  ядерное событие имеет продолжительность, как, например, при Чернобыльской  аварии, то выброс распространится  в разные стороны от источника. В  таком случае создаются радиальные сети мониторинга и реперная сеть в 60–км зоне от АЭС. Наблюдение за ней проводилось в течение первых 10 лет после аварии. В результате была создана карта и отслежена динамика радиоактивного загрязнения многими радионуклидами Чернобыльского происхождения.

      В 2006–2009 гг. проводился новый этап радиационного мониторинга для получения выводов о зависимости изменения уровней радиоактивного загрязнения от ландшафтных факторов в большом временном промежутке. Одним из основным исследуемым радионуклидом в дальних чернобыльских выпадениях является 137Cs. Были разработаны маршруты экспериментальных исследований в зоне восточного чернобыльского следа в их привязке к автоморфным, транзитным и аккумулятивным ландшафтам. Это делалось для оценки влияния процессов латерального массопереноса в сопряженных ландшафтах [15].

      Так же, для оценки состояния отчужденных  территорий подверженных радиационному  загрязнению может применяться  такой дистанционный способы  мониторинга, как метод определения  содержания радионуклидов в ландшафте.

      В течение определенного количества времени отбираются пробы почв с использованием бассейнового подхода к выбору мест отбора, разработанного Е.В. Квасниковой.

      Для получения данных о плотности  загрязнения почв радионуклидами использовались методы, основанные на сочетании гамма–спектрометрии in situ с отбором почвенных проб с последующим их лабораторным анализом.

      Полевые измерения содержания радионуклидов  в ландшафте проводились при  помощи портативных гамма–спектрометров  по методу гамма–спектрометрии in situ.

      Метод гамма–спектрометрии in situ используется для исследований локальных мест загрязнения и позволяет оперативно получить большое число измерений.

      Основной  проблемой измерений in situ является задача пересчета данных о поверхностном  излучении в величину запаса радиоизотопа в ландшафте.

      При наземных измерениях и расчетах дозовых  характеристик важно учитывать  влияние микрорельефа почвы. Неровности почвы могут ослаблять мощность дозы так же, как и заглубление  радионуклида.

      Достоинством  метода полевой гамма–спектрометрии in situ является то, что он, набирая большое число измерений в границах элементарного ландшафта, даёт возможность при осреднении этих значений охарактеризовать загрязнение выделенного ландшафта с достаточно высокой надежностью.

      В качестве вспомогательных средств  при измерениях на местности использовались портативные приборы для определения мощности дозы гамма–излучения – дозиметры. Измерения мощности дозы проводились как для контроля вариабельности поля загрязнения при радиационном мониторинге, так и для дополнения массива данных. Использовались дозиметры РКСБ–104 и ДРГ–ОДТ. Определение проводилось на высоте 1м и у поверхности почвы.

      В процессе полевых работ производился отбор почвенных проб и укосов луговой растительности на гамма–спектрометрический анализ, который проводится в лаборатории.

      В результате такой радиационной разведки территории отбирается большое количество исходных образцов почвы. В дальнейшем из них готовятся препараты (для  каждого вида исследования свои препарат) и эти препараты поступают  на анализы:

      –физико–химический (дисперсный анализ, радиография), который  базируется на переходе радиоактивности  в раствор;

      –радиохимический, основанный на химическом разделении отдельных радионуклидов;

      –радиометрический, при котором используются методы, позволяющие при оптимальных затратах времени и средств с помощью доступной аппаратуры получить достоверные результаты с приемлемой для радиационной безопасности погрешностью измерения. При определении активности бета–излучателей широко используются сцинтилляционные и газоразрядные счетчики. Активность гамма–излучателей, как правило, измеряют с помощью сцинтилляционных детекторов, активность нуклидов в ряде случаев определяется с использованием метода совпадений; для измерений удельной и объемной активности радионуклидов цезия-137 по гамма-излучению радиометром РКГ-01А.

Информация о работе Природопользование отчужденных территорий подвеоженных радиоактивному загрязнению