Техническое производство ПК

Автор работы: Пользователь скрыл имя, 30 Октября 2012 в 19:14, реферат

Описание работы

Компьютер - это электронное устройство, которое выполняет операции ввода информации, хранения и обработки ее по определенной программе, вывод полученных результатов в форме, пригодной для восприятия человеком. За любую из названных операций отвечают специальные блоки компьютера: устройство ввода, центральный процессор, запоминающее устройство, устройство вывода. Все эти блоки состоят из отдельных меньших устройств.

Содержание работы

1.Архитектура и классификация вычислительных систем.
2.Периферийные устройства ПК
2.1.Устройства ввода данных.
2.1.1. Устройства ввода текстовых символов и команд.
2.1.2. Устройства ввода изображения.
2.1.3. Устройства ввода звука.
2.1.4. Указательные устройства.
2.2.Устройства вывода данных.
2.2.1.Мониторы.
2.2.2.Принтеры.
2.2.3.Проекторы.
2.2.4.Графопостроители.
3. Системный блок ПК.
3.1.Центральный процессор.
3.2.Оперативная память.
3.3. Устройства хранения данных.
3.3.1.магнитные устройства хранение данных.
3.3.2. Оптические устройства хранения данных.
3.3.3. Флеш-память.
3.4. Видеокарта.
3.5. Системная плата.
3.6. Блок питания.
3.7. Система охлаждения.

Файлы: 1 файл

реферат по информатике!!!.doc

— 534.50 Кб (Скачать файл)

Виды процессоров:

  • Буферный процессор [front-end processor] - Процессор или специализированная микроЭВМ, реализующие промежуточную обработку данных, которыми обмениваются центральный процессор или центральная ЭВМ с устройствами ввода-вывода .
  • Препроцессор [preprocessor] - 1. Программа, выполняющая предварительную обработку данных для другой программы;
  • CISC (Complex Instruction Set Computing) - “ Вычислитель со сложным набором команд” - Технология и архитектура построения микропроцессоров фирмы Intel .
  • RISC (Redused Instruction-Set Computer) - “ Вычислитель с сокращенным набором команд” - Технология и архитектура построения микропроцессоров, альтернативная технологии CISC . Принцип построения RISC- процессоров основан на применении набора простых команд и “на их основе сборки” требуемых более сложных команд. Это позволяет сделать микропроцессоры более компактными и производительными, а также менее энергоемкими и дорогими. Другое преимущество технологии RISC заключается в принципиальной возможности обеспечения совместимости ПЭВМ типа IBM PC и Macintosh фирмы Apple . Работы, направленные на реализацию указанной возможности, ведутся с 1992 г. фирмами Apple, IBM и Motorola в рамках проекта PowerPCTM . В 1994 г . фирмой Apple была выпущена первая ПЭВМ “Power Macintosh” с МП PowerPC (Performance Optimized With Enhanced RISC Perconal Computer). Последний из выпускаемых МП этого вида - 132-х Мгц PowerPC 604 является самым “быстрым” или производительным и в указанном плане составляет конкуренцию МП Pentium, а возможно и Pentium Pro . Однако полной совместимости с МП ряда Intel он, также как и другие модели PowerPC пока не обеспечивает (для согласования этих систем используется программный транслятор, преобразующий команды х86 в команды PowerPC, который обеспечивает возможность поддержки ограниченного числа применяемых IBM PC программных продуктов). Сказанное сдерживает массовое применение МП PowerPC. Тем не менее объем продаж МП PowerPC в течение одного года с момента выпуска первой ПЭВМ “Power Macintosh” составил более одного млн. машин .
  • Процессор-клон , клон [cloneprocessor, clone] - Процессор, выпускаемый другой фирмой - не его основным разработчиком и производителем, в том числе по лицензии или без нее. Наибольшее распространение на мировом рынке средств вычислительной техники получили клоны микропроцессоров моделей ряда х386, х486, Pentium,…,P entium III и т.д., выпускаемые другими фирмами - не Intel . Как правило, клоны представляют собой собственную разработку выпускающих их фирм. При этом они могут быть как полностью, так и только частично совместимы с оригинальной продукцией фирмы Intel, иметь отличные от них характеристики и даже успешно конкурировать с ними. Так, например, 29 ноября 1999 г. фирма AMD выпустила и произвела презентацию микропроцессора Athlon 750 (МГц), впервые в мире произведенного по т.н. “аллюминиевой” 0,18 мкм технологии и превысившего по производительности микропроцессор Intel Pentium III 733 МГц. В марте 2000 г. фирма AMD выпустила на мировой рынок первую партию микропроцессоров с тактовой частотой в 1 ГГц, а в октябре этого же года – процессор Athion 1,2 ГГц и Duron 800 ГГц. Наиболее известными фирмами-производителями клонов являются: AMD, Cyrix, IBM Microelectronics, SGS-Thomson, Texas Instruments, NexGen и др.

Диапазон цен-от 80 тыс. до 3 млн.руб.

Операти́вная па́мять (также оперативное запоминающее устройство, ОЗУ) — в информатике — память, часть системы памяти ЭВМ, в которую процессор может обратиться за одну операцию (jump, move и т. п.). Предназначена для временного хранения данных и команд, необходимых процессору для выполнения им операций. Оперативная память передаёт процессору данные непосредственно либо через кеш-память. Каждая ячейка оперативной памяти имеет свой индивидуальный адрес.ОЗУ может изготавливаться как отдельный блок или входить в конструкцию однокристальной ЭВМ или микроконтроллера.

Физические виды ОЗУ: на сегодня наибольшее распространение имеют два вида ОЗУ:

  • SRAM (Static RAM).ОЗУ, собранное на триггерах, называется статической памятью с произвольным доступом или просто статической памятью. Достоинство этого вида памяти — скорость. Поскольку триггеры собраны на вентилях, а время задержки вентиля очень мало, то и переключение состояния триггера происходит очень быстро. Данный вид памяти не лишён недостатков. Во-первых, группа транзисторов, входящих в состав триггера, обходится дороже, даже если они вытравляются миллионами на одной кремниевой подложке. Кроме того, группа транзисторов занимает гораздо больше места, поскольку между транзисторами, которые образуют триггер, должны быть вытравлены линии связи.
  • DRAM (Dynamic RAM).Более экономичный вид памяти. Для хранения разряда (бита или трита) используется схема, состоящая из одного конденсатора и одного транзистора (в некоторых вариациях конденсаторов два). Такой вид памяти решает, во-первых, проблему дороговизны (один конденсатор и один транзистор дешевле нескольких транзисторов) и во-вторых, компактности (там, где в SRAM размещается один триггер, то есть один бит, можно уместить восемь конденсаторов и транзисторов).Есть и свои минусы. Во-первых, память на основе конденсаторов работает медленнее, поскольку если в SRAM изменение напряжения на входе триггера сразу же приводит к изменению его состояния, то для того чтобы установить в единицу один разряд (один бит) памяти на основе конденсатора, этот конденсатор нужно зарядить, а для того чтобы разряд установить в ноль, соответственно, разрядить. А это гораздо более длительные операции (в 10 и более раз), чем переключение триггера, даже если конденсатор имеет весьма небольшие размеры. Второй существенный минус — конденсаторы склонны к «стеканию» заряда; проще говоря, со временем конденсаторы разряжаются. Причём разряжаются они тем быстрее, чем меньше их ёмкость. В связи с этим обстоятельством, дабы не потерять содержимое памяти, заряд конденсаторов необходимо регенерировать через определённый интервал времени — для восстановления. Регенерация выполняется путём считывания заряда (через транзистор). Контроллер памяти периодически приостанавливает все операции с памятью для регенерации её содержимого, что значительно снижает производительность данного вида ОЗУ. Память на конденсаторах получила своё название Dynamic RAM (динамическая память) как раз за то, что разряды в ней хранятся не статически, а «стекают» динамически во времени.

В реальном режиме память делится  на следующие участки:

  • Основная область памяти (англ. conventional memory).
  • Upper Memory Area (UMA).
  • Дополнительная память (доступна через спецификацию англ. eXtended Memory Specification, XMS).
  • High Memory Area (HMA).

УСТРОЙСТВА ХРАНЕНИЯ ДАННЫХ.

Магнитные устройства хранения данных: принцип работы магнитных запоминающих устройств основаны на способах хранения информации с использованием магнитных свойств материалов. Как правило, магнитные запоминающие устройства состоят из собственно устройств чтения/записи информации и магнитного носителя, на который, непосредственно, осуществляется запись и с которого считывается информация. Магнитные запоминающие устройства принято делить на виды в связи с исполнением, физико-техническими характеристиками носителя информации и т.д. Наиболее часто различают: дисковые и ленточные устройства. Общая технология магнитных запоминающих устройств состоит в намагничивании переменным магнитным полем участков носителя и считывания информации, закодированной как области переменной намагниченности. Дисковые носители, как правило, намагничиваются вдоль концентрических полей дорожек, расположенных по всей плоскости дискоидального вращающегося носителя. Запись производится в цифровом коде. Намагничивание достигается за счет создания переменного магнитного поля при помощи головок чтения/записи. Головки представляют собой два или более магнитных управляемых контура с сердечниками, на обмотки которых подается переменное напряжение. Изменение полярности напряжения вызывает изменение направления линий магнитной индукции магнитного поля и, при намагничивании носителя, означает смену значения бита информации с 1 на 0 или с 0 на 1. Дисковые устройства делят на гибкие (Floppy Disk) и жесткие (Hard Disk) накопители и носители. Основным свойством дисковых магнитных устройств является запись информации на носитель на концентрические замкнутые дорожки с использованием  физического и логического цифрового кодирования информации. Плоский дисковый носитель вращается в процессе чтения/записи, чем и обеспечивается обслуживание всей концентрической дорожки, чтение и запись осуществляется при помощи магнитных головок чтения/записи, которые позиционируют по радиусу носителя с одной дорожки на другую. Дисковые устройства, как правило, используют метод записи называемый методом без возвращения к нулю с инверсией (Not Return Zero NRZ). Запись по методу NRZ осуществляется путем изменения направления тока подмагничивания в обмотках головок чтения/записи, вызывающее обратное изменение полярности намагниченности сердечников магнитных головок и соответственно попеременное намагничивание участков носителя вдоль концентрических дорожек с течением времени и продвижением по окружности носителя. При этом, совершенно неважно, происходит ли перемена магнитного потока от положительного направления к отрицательному или обратно, важен только сам факт перемены полярности. Для записи информации, как правило, используют различные методы кодирования информации, но все они предполагают использование в качестве информационного источника не само направление линий магнитной индукции элементарной намагниченной точки носителя, а изменение направления индукции в процессе продвижения по носителю вдоль концентрической дорожки с течением времени. Такой принцип требует жесткой синхронизации потока бит, что и достигается методами кодирования. Методы кодирования данных не влияют на перемены направления потока, а лишь задают последовательность их распределения во времени (способ синхронизации потока данных), так, чтобы, при считывании, эта последовательность могла быть преобразована к исходным данным.

Оптические устройства хранения данных:

CD-R (Compact Disc-Recordable, Записываемый Компакт-Диск) — разновидность компакт-диска (CD), разработанная компаниями Philips и Sony для однократной записи информации. CD-R поддерживает все возможности стандарта «Red Book» и плюс к этому позволяет записать данные.

Технические детали: обычный CD-R представляет собой тонкий диск из прозрачного пластика — поликарбоната — толщиной 1,2 мм, диаметром 120 мм (стандартный), вес 16-18 гр. или 80 мм (мини) . Ёмкость стандартного CD-R составляет 74 минуты аудио или 650 МБ данных. Однако, на данный момент стандартной ёмкостью CD-R можно считать 702 МБ данных (точнее 736 966 656 байт) или 79 минут 59 секунд и 74 фрейма. Такая ёмкость достигается небольшим превышением допусков, описанных в стандарте «Оранжевой Книги» (CD-R/CD-RW). Также на рынке имеются 90-минутные / 790 МБ и 99-минутные / 870 МБ диски, которые получили гораздо меньшее распространение.Поликарбонатный диск имеет спиральную дорожку для направления луча лазера при записи и считывании информации. С той стороны, где находится эта спиральная дорожка, диск покрыт записывающим слоем, который состоит из очень тонкого слоя органического красителя и затем отражающим слоем из серебра, его сплава или золота. Этот отражающий слой покрывается защитным фотополимеризуемым лаком и отверждается ультрафиолетовым излучением. И уже на этот защитный слой наносятся различные надписи краской.Чистый CD-R не является полностью пустым, на нём имеется служебная дорожка с сервометками ATIP — Absolute Time In Pregroove — абсолютное время в служебной дорожке. Эта служебная дорожка нужна для системы слежения, которая удерживает луч лазера при записи на дорожке и следит за скоростью записи (то есть следит, чтобы длина пита была постоянной). Помимо функций синхронизации, служебная дорожка также содержит информацию об изготовителе этого диска, сведения о материале записывающего слоя, длине дорожки для записи и т. п. Служебная дорожка не разрушается при записи данных на диск и многие системы защиты от копирования используют её для того, чтобы отличить оригинал от копии.Первыми компаниями, которые начали выпуск «болванок» CD-R были Taiyo Yuden, Kodak, Maxell и TDK. С тех пор стандарт CD-R подвергался дальнейшему развитию для обеспечения всё больших скоростей записи и в настоящее время (2006) максимальная возможная скорость записи CD-R равна 52x, то есть в 52 раза больше чем та, которая определена в стандарте «Оранжевой Книги» (1x = 150 КБ/с). Эти доработки заключаются, в основном, в новых материалах для записывающего слоя, лучшей геометрии дорожки и технологии нанесения записывающего слоя. Низкоскоростная запись 1х используется до сих пор для записи особых «аудио CD-R», так как записывающие деки на компакт-дисках были стандартизованы именно на эту скорость.

CD-RW (англ. Compact Disc-Rewritable, Перезаписываемый компакт-диск) — разновидность компакт-диска (CD), разработанный в 1997 году для многократной записи информации.

Технические детали: CD-RW является дальнейшим логическим развитием записываемого лазерного компакт-диска CD-R, однако, в отличие от него, позволяет многократно перезаписывать данные. Этот формат был представлен в 1997 году и в процессе разработки назывался CD-Erasable (CD-E, Стираемый Компакт-Диск). CD-RW во многом похож на своего предшественника CD-R, но его записывающий слой изготавливается из специального сплава халькогенидов, который при нагреве выше температуры плавления переходит из кристаллического агрегатного состояния в аморфное. Фазовые переходы между различными состояниями вещества всегда сопровождаются изменением физических параметров среды. Нормальным состоянием твердых тел и основным в окружающей нас природе является кристаллическое. В этом отношении аморфные тела — редкость, так как стеклообразное (аморфное) состояние реализуется только при затвердевании переохлажденного расплава. От других аморфных состояний стекла отличаются тем, что процессы перехода расплав — стекло и стекло — расплав обратимы. Эта их особенность чрезвычайно важна для создания реверсивных носителей оптической записи, то есть обеспечивающих многократную перезапись. Основным условием образования стекловидных состояний, в том числе металлов, является охлаждение, настолько быстрое, что атомы не успевают занять отведенные им места в кристаллических ячейках и «замирают» как попало, когда тепловая релаксация атомов сопоставима или становится меньше межатомных расстояний. При толщине активного слоя оптического диска в 0,1 мкм создать условия для сверхбыстрого охлаждения не трудно. Полный цикл: запись — многократное воспроизведение — стирание — новая запись выглядит следующим образом. Подогревая лазером, рабочий слой оптического диска, находящийся в кристаллическом состоянии, переводят в расплав. За счет быстрой диффузии тепла в подложку расплав быстро охлаждается и переходит в фазу стекла. Кристаллическому и стеклообразному состояниям присущи разные диэлектрическая проницаемость, коэффициент отражения, а следовательно, и интенсивность отраженного света, которая и несет информацию о записи на диске. Считывание производится при пониженной интенсивности излучения лазера, не влияющей на фазовые переходы. Для новой записи необходимо вернуть рабочий слой в исходное кристаллическое состояние. Для этого используется двухступенчатая модуляция (короткий мощный импульс для расплава активного слоя и длинный импульс для постепенного охлаждения вещества) мощности лазера. Перегрев замедлит процесс диффузии тепла и создаст условия для возврата в кристаллическую фазу. Активный слой обычно изготовляют из халькогенидного стекла — сплава серебра (Ag), индия (In), сурьмы (Sb) и теллура (Te).Многократная перезапись в принципе может приводить к механической усталости рабочего слоя и, как следствие, к его разрушению. Поэтому при выборе веществ важным фактором становится отсутствие эффекта накопления усталости. Современные CD-RW диски позволяют перезаписывать информацию порядка 1000 раз[1]. Работа с дисками CD-RW очень похожа на работу с однократно записываемыми дисками CD-R. Позднее появился новый формат записи болванок CD-RW — Universal Disk Format (UDF, Packet Writing), который позволяет «отформатировать» диск и работать с ним как с обычной большой дискетой, позволяющей чтение/запись/удаление/изменение данных. Объём таких UDF-форматированных дисков равен примерно 530 Мбайт, в отличие от обычных 700 Мбайт при записи одной сессией на весь диск. CD-RW диски не удовлетворяют требованиям, описанным в стандартах «Red Book» (CD-ROM) и «Orange Book Part II» (CD-R), в отношении коэффициента отражения. Поэтому такие диски не читаются в старых приводах компакт-дисков, выпущенных до 1997 года. CD-R считается более подходящим стандартом носителей для резервного копирования, так как записанная на них информация уже не может быть изменена и производители «болванок» указывают бо́льшее время хранения данных для дисков CD-R, чем для CD-RW.При обычной записи на CD-RW (не UDF), периодически нужно полностью стирать диск. Существует два вида стирания — «полное» и «быстрое». Как следует из названия, при «полном» стирании весь диск переводится в кристаллическое состояние и старая информация уничтожается физически. А «быстрое» стирание очищает только небольшую часть диска (англ. Lead-in — зона, где хранится информация о содержании диска), что происходит гораздо быстрее. Однако при этом существует техническая возможность восстановить данные. Поэтому, если есть необходимость сохранения конфиденциальности информации, то нужно использовать полное стирание.

Информация о работе Техническое производство ПК