Техническое обслуживание процессора

Автор работы: Пользователь скрыл имя, 25 Ноября 2012 в 02:35, курсовая работа

Описание работы

Целью данного курсового проекта является, обзор наиболее распространенных на рынке моделей, их свойств и возможностей, рассмотрение устройства процессоров в целом и особенностей конструктивного исполнения отдельных видов, описание технического обслуживания процессоров, диагностики, поиска и устранения неисправностей.

Содержание работы

Введение………………………………………………………………….………………… 3
2 Анализ и перспективы рынка…………………………………………………………….5
2.1 Принцип работы и назначение рассматриваемого устройства……………………...5
2.2 Анализ фирм и моделей…………………………………………………………….......7
2.3 Перспективы данного класса…………………………………………………………10
3 Выбор и описание конкретной модели………………………………………………..11
3.1 Описание Intel Core i7 ………………………………………………………………...11
3.2 Особенности микроархитектуры Core i7 ……………………………………………11
3.3 Особенности моделей Corei7………………………………………………………….13
3.4 Процессорные технологии Corei7…………………………………………………….14
3.5 Архитектура Corei7…………………………………………………………………….15
3.6 Платформа LGA1366…………………………………………………………………..16
3.7 Структурная схема Соre i7……………………………………………………………..17
4 Техническое обслуживание и диагностика устройства……………………………….19
4.1 Установка процессора………………………………………………………………….19
4.2 Профилактика процессоров и техническое обслуживании…………………………21
4.3 Программные средства диагностики процессора…………………………………….22
4.4 Неисправности процессоров и их устранение………………………………………..24
5 Заключение………………………………………………………………………………..26
Список литературы…………………………………………………………………………27

Файлы: 1 файл

Техническое обслуживание процессоров.doc

— 1.81 Мб (Скачать файл)

Флагманский 32-нм шестиядерный процессор Gulftown также должен появиться в первом квартале 2010 года. Компания Intel приготовила и ему место в своей платформе Skulltrail. Для владельцев материнских плат на базе чипсета Intel X58 может станет возможность их корректной работы с чипами Gulftown. Разумеется, необходимо будет обновить прошивку BIOS.

AMD  Thuban представляет шести ядерных серверных Opteron Istanbul. Процессор будет выполнен по 45-нм техническому процессу, получит интегрированный контроллер памяти DDR3, 3 Мб кэша L2 и 6 Мб кэша L3. При этом конструктивное исполнение будет совместимо с существующими процессорными гнездами AM3 и AM2+. Ожидается, что новый чип получит маркировку Phenom II X6.Oжидается в продаже во втором квартале 2010 года.

В процессорах, запланированных  на 2010 и 2011 годы, AMD планирует увеличить размер кэш-памяти и ёмкость поддерживаемой оперативной памяти. Однако представители AMD всё ещё не говорят про возможность многопоточности, которая активно используется в процессорах Intel. Многопоточность позволяет многоядерному процессору обрабатывать несколько вычислительных потоков одновременно.

 

 

 

 

 

 

 

 

              3  Выбор и описание конкретной модели

 

 

3.1 Описание Intel Core i7 

 

Intel Core i7 — семейство процессоров x86-64 от Intel. Это первое семейство, использующее микроархитектуру Intel Nehalem. Также является преемником семейства Intel Core 2. Все три модели процессоров четырех ядерные. Идентификатор Core i7 применяется и к первоначальному семейству с рабочим названием Bloomfield, запущеных в 2008. Название Core i7 показывает поколение процессора (Core 2 Duo/Quad/Extreme были 6-го поколения).

Выпуск четырехъядерников Core i7  закрепил подавляющее преимущество Intel в секторе наиболее производительных решений. Кроме того, с анонсом Core i7 возвращается основательно подзабытая технология Hyper-Threading, обеспечивающая многопоточную обработку данных в пределах одного физического ядра. Этот факт должен побудить разработчиков ПО к дальнейшей оптимизации софта для процессоров с числом ядер больше двух.

 

3.2 Особенности микроархитектуры Core i7 

 

В Nehalem использован целый ряд усовершенствований, и можно утверждать, что она имеет кардинальные отличия от прежних микроархитектур Intel. Основной принцип построения процессоров на основе Nehalem – модульность, которая позволит варьировать количество ядер и изменять оснащенность процессорной системы прочими блоками (в т. ч. графическими), в зависимости от предназначения и требуемой производительности.

Нововведения микроархитетуры  сильно напоминают структуру уже  используемых AMD процессоров, но дополненную  вычислительной мощью ядер Core. Core i7, также как и процессоры AMD имеют встроенный контроллер памяти, что позволяет ядрам напрямую связываться с DDR модулями на системной плате, значительно ускоряя обмен данными между процессором и оперативной памятью. Встроенный контроллер памяти имеет максимальную пропускную способность 25,6 Гбайт/с. При этом, вместо традиционной двухканальной системы обмена использована трехканальная, с поддержкой модулей DDR3 1066 МГц.

Традиционная процессорная FSB шина параллельного типа Quad Pumped заменена последовательным интерфейсом, который уже давно используется в процессорах AMD. Core i7 общается с элементами чипсета через последовательную шину с фирменным названием QuickPath Interconnect (QPI). Микроархитектура Nehalem позволяет использовать несколько таких внешних интерфейсов для одного процессора. Интерфейс QuickPath позволяет объединять несколько процессоров, в случае использования их в компьютерной системе. QuickPath состоит из 20 двунаправленных каналов связи. Система обмена данными построена по т. н. принципу точка-точка, т. е. ядра, используя отдельные каналы, индивидуально подключаются к внешним устройствам. Для увеличения полосы пропускания может быть задействовано несколько каналов.

Такая шина может выполнять до 6,4 млн. передач в секунду, имея полосу пропускания 12,8 Гбайт/c в каждом направлении  или 25,6 Гбайт/c в обоих направлениях. Старая шина Intel Quad Pumped Bus позволяла достичь только 12,8 Гбайт/c. Подобная QPI шина HyperTransport 3.0, используемая сейчас с процессорами AMD, имеет максимальную пропускную способность 24 Гбайт/c.

Новые принципы организации  процессора важные, но далеко не единственные нововведения микроархитектуры Nehalem, приведённого на рисунке 4. Среди наиболее важных инноваций отмечается поддержка технологии многопоточности SMT (англ. Simultaneous Multi-Threading). Эта технология позволяет каждому из четырех ядер одновременно выполнять две задачи. Таким образом, для операционной системы новые процессоры становятся, как бы восьми ядерными, и это ускоряет работу многопоточных приложений, за счет одновременного выполнения большего количества задач. SMT является по сути реанимацией технологии Intel Hyper-Threading, разработанной некогда для одно ядерных процессоров.

Процессоры Corei7 поддерживают новый набор инструкций SSE4.2, имеют более эффективную и быструю кэш-память. Суммируя все вышесказанное можно сказать, что к основным особенностям архитектуры Nehalem относятся:

  • наличие двух, четырех или восьми ядер;
  • усовершенствованные ядра обладают большей вычислительной мощностью;
  • SMT технология, увеличивает производительность каждого ядра;
  • использована трехуровневая кэш-память: 64KB L1 на ядро, 256KB L2 на ядро, до 24MB L3 (общий кэш);
  • интегрированный трехканальный контроллер памяти с поддержкой DDR3;
  • новая производительная внешняя шина процессора – QPI;
  • возможность встраивания графического ядра.

Рисунок 4- Микроархитектура Intel Nehalem

 

3.3 Особенности моделей Corei7

В таблице номер 2, представлены основные характеристики процессоров первого семейства Intel Core i7, три процессора отличаются в основном тактовой частотой (2,66 ГГц; 2,93 ГГц и 3,2 ГГц).

Таблица 2- Характеристики процессоров.

Модель

Число ядер

Тактовая частота,ГГц

Кэш L2, кб

Кэш L3, Mб (совм.)

TDP, Вт

Socket

Core i7 920

4

2,66

256

8

130

LGA1366

Core i7 940

4

2,93

256

8

130

LGA1366

Core i7 965

4

3,2

256

8

130

LGA1366


 

Самый производительный Core i7 965 Extreme Edition имеет еще и значительно более скоростной вариант внешнего интерфейса QuickPath. Все процессоры имеют кэш-память уровня L1 объемом 64 кбайт, 256 кбайт кэш-памяти L2 и совместно используемый ядрами кэш L3 в 8 Мбайт. Core i7 поддерживают все наборы дополнительных инструкций Intel: MMX, SSE, SSE2, SSE3 и SSSE3, SSE4.1 и SSE4.2. Самый мощный процессор Core i7 965 XE имеет отдельно разблокируемые множители для памяти и ядер, что дает преимущества в случае его разгона.

Значительные усовершенствования и высокие технические данные значительно увеличивают производительность новых процессоров. Однако на практике их реальная эффективность во многом зависит от типа решаемых задач. Core i7 не будут иметь явного преимущества над традиционными многоядерными процессорами Core при однопотоковой загрузке.

 

3.4 Процессорные технологии  Corei7

 

Четырех ядерные процессоры Intel Core i7 показывают во многих тестах рекордную  производительность, добиваться которой  позволяет использование фирменных процессорных технологий Intel:

  • Intel Turbo Boost – при необходимости позволяет работающим ядрам повышать тактовую частоту (с шагом 133 МГц) до максимально возможной по тепловой защите. Неиспользуемые ядра могут программно переводиться в режим нулевого энергопотребления;
  • технология Intel Smart Cache обеспечивает высокую производительность и эффективность кэш-памяти, оптимизирована для самых современных многопоточных игр;
  • технология Intel QuickPath Interconnect разработана для повышения пропускной способности и снижения задержек в процессе обмена. С процессорами Extreme Edition она позволяет достигнуть суммарных скоростей передачи данных до 25,6 ГБ/с;
  • технология Intel HD Boost значительно повышает производительность в мультимедийных задачах. Команды из наборов дополнительных инструкций выполняются за один тактовый цикл, позволяя достичь нового уровня эффективности с приложениями, оптимизированными для набора команд SSE4.

 

3.5 Архитектура Corei7

 

Согласно официальным сведениям  первые процессоры Nehalem обладают, по крайней мере, 731 млн. транзисторов, что на 10,7% меньше, чем у «квадов» Penryn Yorkfield. В то же время, площадь кристалла Core i7 увеличена с 214 до 263 мм2, приведён на рисунке 5.

 

 

Рисунок 5- Архитектурное строение Core i7


Процессоры Bloomfield имеют нативный четырехъядерный дизайн, тогда как структура их предшественников – Core 2 Quad – представляла собой мультичиповый модуль из пары Core 2 Duo. К числу основных элементов кристалла Core i7 принадлежат четыре физических ядра, разделяемый кэш третьего уровня, встроенный контроллер памяти DDR3 и шина QuickPath Interconnect (QPI).

Каждое из четырех  ядер Bloomfield, в свою очередь, распределяется на меньшие блоки приведён на рисунке 6.

 

Рисунок 6- Устройство каждого ядра

 

На рисунке изображено устройство ядро процессора, оно состоит из кэша данных первого уровня, кэш прерываний второго уровня, ваборка инструкций кэша первого уровня, инструкция декода и миропрограмм, упорядочности памяти и выполняемости, выполняемости устройств, порядок планирования, подкачки и ветки прогноза. Ядро многоядерного процессора дает нам новую инструцию SSE4.2, улучшенный замок поддержки, дополнительную кэш и иерархию, улучшенный цикл, улучшенная ветка прогноза, быстрая виртуализация, одновременная много поточность и более глубокий буфер.


Ширина конвейера Core i7 сохранена на уровне 4-х инструкций за такт; при этом значительно расширены  буферы резервирования, загрузки, хранения и внеочередного выполнения операций. Эти изменения помогают оптимизировать энергопотребление CPU и более эффективно распараллеливать вычисления.

 

 

3.6 Платформа LGA1366

Жизнеспособность процессоров  линейки Core i7 обеспечивают соответствующие  материнские платы на базе чипсета Intel X58 Express (Tylersburg). Упомянутый набор  логики, в свою очередь, состоит из северного моста X58 IOH и южного моста ICH10(R), знакомого по актуальным предложениям на 775-м сокете. Структурная схема чипсета Intel X58 приведена на рисунке 7.

 


 

 

 

 

 

 

 

 

 

Рисунок 7- Структурная схема чипсета Intel X58.

 

Официально Core i7 рекомендуется использовать с планками DDR3-1066 (8,5 Гбит/с), однако существуют достоверные сведения об успешной работе на платах Intel X58 модулей памяти номиналом 1600 МГц и выше. В расчете на трехканальные комплекты оперативной памяти предусматривается, как правило, 3 или 6 слотов RAM; максимальный объем устанавливаемой DDR3 – 4 ГБ на один слот. На всякий случай отметим, что материнские платы LGA1366 под DDR2 выпускаться не будут, т.к. поддержка второго поколения DDR не реализована на уровне контроллера.

 

3.7 Структурная схема Соre i7

 

При работе процессора на базе микроархитектуры Nehalem инструкции x86 выбираются из кэша инструкций L1 (Instruction Сache) размером 32 Кбайт (рис. 2). Команды загружают из кэша блоками фиксированной длины, из которых выделяются инструкции, направляемые на декодирование. Поскольку инструкции x86 имеют переменную длину, а блоки, которыми команды загружаются из кэша, — фиксированную длину, при декодировании команд нужно определить границы между отдельными командами.

Информация о размерах команд хранится в кэше инструкций L1 в специальных полях (по 3 бита информации на каждый байт инструкций). Эту информацию для определения границ команд можно было бы использовать в самом декодере непосредственно в процессе их декодирования. Перед декодированием производится выделение команд из выбранного блока. Данная процедура называется предварительным декодированием (PreDecode) и позволяет поддерживать постоянный темп декодирования независимо от длины и структуры команд.

В процессорах с микроархитектурой Nehalem, так же как и в процессорах с микроархитектурой Intel Core, выборка команд производится 16-байтными блоками, то есть за каждый такт из кэша загружается 16-байтный блок команд, приведён на рисунке 8.


Рисунок 8- Структурная схема процессора Intel Core i7

 

 

 

 

 

 

 

 

 

 

 

 

4 Техническое обслуживание  и диагностика устройства

 

4.1 Установка процессора

 

Процессоры  от Intel- установка процессора на платформе LGA1366 конструктивно похожа на установку процессора сокета 775, приведённого на рисунке 9. В отличие от предыдущих моделей, эти процессоры не оснащены «ножками», тем самым уменьшается риск повредить его при неаккуратном обращении. На процессорах 775 сокета расположены контактные точки, а «ножки» расположены на самой системной плате. Итак, перед нами материнская плата и процессор. В центре платы расположен сокет, защищенный защитной крышкой. Для того чтобы установить процессор, необходимо выполнить следующие действия:

  • отвести и поднять рычаг гнезда на сокете;
  • открыть пластину крепления;
  • удалить защитную крышку сокета;
  • взять процессор из коробки и удалить черную защитную пластину. Держите процессор только за края, не касайтесь контактов! Опустите процессор в сокет материнской платы строго вертикально, не допуская перекоса. Обратите внимание на желтую стрелку в одном из углов процессора и стрелку на сокете – эти стрелки указывают, какой стороной процессор нужно помещать в сокет. На сокете в свою очередь находятся выступы – это и есть та защита «по ключу». После того как процессор был установлен, закройте пластину крепления, и опустите рычаг гнезда на место;

Информация о работе Техническое обслуживание процессора