Автор работы: Пользователь скрыл имя, 01 Октября 2011 в 22:26, дипломная работа
Требования к качеству программных средств всё время повышаются. Процессы разработки, приобретения и внедрения сложных систем, к которым относятся в частности программные комплексы, должны находится под жестким управленческим контролем. В настоящее время практически во всех организациях обеспечивается контроль важнейших характеристик, связанных с производством и использованием программных продуктов, таких как время, финансовые средства, ресурсы и т.п. Однако в большинстве случаев вне пределов сферы контроля оказывается наиболее важная характеристика программных продуктов, ради которой, собственно и осуществляются затраты времени, финансовых средств и ресурсов - это качество продукта, поскольку «невозможно контролировать то, что нельзя измерить» (“You cannot control what you cannot measure”).
Введение 3
ГЛАВА 1. Качество программного обеспечения 6
1.1 Понятие качества 6
1.2 Стандарт ГОСТ Р ИСО МЭК 9126 8
1.2.1 Модель характеристик качества 9
1.2.2 Характеристики и атрибуты качества 13
1.3 Метрики 19
1.3.1 Основные направления применения метрик 23
1.3.2 Метрические шкалы 24
1.3.3 Метрики сложности программ 24
1.3.4 Объектно-ориентированные метрики 35
1.3.5 Метрики Холстеда 36
1.3.6 Метрики цикломатической сложности по Мак-Кейбу 45
1.3.7 Метрики Чепина 50
1.3.8 Размерно-ориентированные метрики (показатели оценки объема) 52
1.4 Альтернативные подходы к измерению качества 56
1.5 Оценка результата 62
1.5.1 Линейный подход 62
1.5.2 Оценка с использованием эмпирических данных 63
1.6 Методы контроля качества 67
1.7 Автоматизированные программные продукты по оценке качества ПО. 69
1.7.1 Вычисление метрики SLOC 69
1.7.2 Вычисление метрик сложности 71
1.7.3 Оценки экономических параметров 72
Вывод по главе 1 78
ГЛАВА 2. Изучение темы критерии качества программного обеспечения 80
2.1 Анализ стандарта по профильному курсу информатики 80
2.2 Описание элективного курса «Критерии качества ПО» 83
2.4 Организация и проведение педагогического эксперимента 91
Вывод по главе 2 93
Заключение 94
Приложение 95
Библиографический список 107
M=u+1,
где u – количество операторов ветвления.
При необходимости операторы выбора или переключения с n ветвями, можно рассматривать как n операторов ветвления.
К достоинствам меры относят простоту ее вычисления и повторяемость результата, а также наглядность и содержательность интерпретации. В качестве недостатков можно отметить: нечувствительность к размеру ПО, нечувствительность к изменению структуры ПО, отсутствие корреляции со структурированностью ПО, отсутствие различия между конструкциями Развилка и Цикл, отсутствие чувствительности к вложенности циклов. Недостатки цикломатической меры привело к появлению ее модификаций, а также принципиально иных мер сложности.
Модификации показателя цикломатической сложности:
1.3.7 Метрики Чепина
Существует несколько ее модификаций. Рассмотрим более простой, а с точки зрения практического использования - достаточно эффективный вариант этой метрики.
Суть метода состоит в оценке информационной прочности отдельно взятого программного модуля с помощью анализа характера использования переменных из списка ввода-вывода.
Все множество переменных, составляющих список ввода-вывода, разбивается на четыре функциональные группы.
Далее вводится значение метрики Чепина:
Q = a1P + a2M + a3C + a4T
где a1, a2, a3, a4 - весовые коэффициенты.
Весовые коэффициенты использованы для отражения различного влияния на сложность программы каждой функциональной группы. По мнению автора метрики наибольший вес, равный трем, имеет функциональная группа С, так как она влияет на поток управления программы. Весовые коэффициенты остальных групп распределяются следующим образом: a1=1; a2=2; a4=0.5. Весовой коэффициент группы T не равен нулю, поскольку “паразитные” переменные не увеличивают сложности потока данных программы, но иногда затрудняют ее понимание. С учетом весовых коэффициентов выражение примет вид:
Q = P + 2M + 3C + 0.5T.
1.3.8 Размерно-ориентированные метрики (показатели оценки объема)
Размерно-ориентированные метрики прямо измеряют программный продукт и процесс его разработки. Самой распространенной метрикой исходного кода ПО, отражающей размер программного проекта, является показатель количества строк кода (Source Lines Of Code, SLOC). [6, 7]
1.3.8.1 SLOC - оценка (Source Lines Of Code)
Первоначально SLOC применялся в условиях, когда языки программирования обладали относительно простой структурой и для них характерным было соответствие одной строки кода одной команде языка. Со временем языки программирования эволюционировали, стали гораздо гибче, и это соответствие для них больше не выполнялось – одна физическая строка кода теперь может содержать несколько команд языка. С учетом этого выделялись и две основные разновидности показателя SLOC:
Литера «D» (Delivered) означает «поставленный» код, т. е. только вошедший в законченный программный продукт. Очень часто возникает необходимость учитывать не только поставленный код, но и вспомогательный или промежуточный, который не входит в законченный продукт, но нужен для реализации проекта и требует определенных затрат труда.
Что касается вычисления показателя SLOC, то здесь следует отметить, что не существует единственного общепризнанного подхода, приемлемого для различных языков программирования и ориентированного на универсальное применение. Чаще всего SLOC определяется как общее число строк кода за исключением пустых строк и комментариев. В большинстве случаев подсчитывается именно число «физических» SLOC, и наличие нескольких операторов на одной строке не учитывается. Также отметим, что если в контексте SLOC конкретный язык программирования не называется, это обычно означает, что речь идет о величине, выраженной в базовых единицах, – количестве строк кода языка Basic Assembler. Для сопоставления значений показателя для различных языков программирования применяются специальные таблицы преобразования.
Нередко
показатель SLOC используется на ранних
стадиях работы над проектом с
целью получения
Для метрики SLOC имеется много производных, призванных получить отдельные показатели проекта. Основными среди них являются:
Также наряду со SLOC применяются другие показатели, отражающие количественную оценку отдельных составляющих проекта: число модулей, функций / методов, классов, страниц документации и пр. Однако помимо метрик, подсчитывающих число элементов проекта, к метрикам размера следует отнести также функциональные точки (Function Points, FP), их производные и разновидности, вычисляемые на базе не исходного кода, а пользовательских требований, спецификаций, описаний прецедентов (например, точки прецедентов, Use Case Points, UCP) и пр. В большинстве случаев главное предназначение этой группы метрик, независимо от способа их вычисления, состоит в том, чтобы оценить объем работ по проекту, и, соответственно, быть основой для таких показателей, как стоимость и длительность его реализации.
Потенциальные недостатки SLOC, на которые нацелена критика:
И главное помнить: метрика SLOC не отражает трудоемкости по созданию программы.
1.3.8.2 Метрика стилистики и понятности программ
Иногда
важно не просто посчитать количество
строк комментариев в коде и просто
соотнести с логическими
Fi = SIGN (Nкомм. i / Ni - 0,1)
Суть
метрики проста: код разбивается
на n-равные куски и для каждого
из них определяется Fi [5]
1.4 Альтернативные подходы к измерению качества
Как проверить, что требования определены достаточно полно и описывают все, что ожидается от будущей программной системы? Это можно сделать, проследив, все ли необходимые аспекты качества ПО отражены в них. Именно понятие качественного ПО соответствует представлению о том, что программа достаточно успешно справляется со всеми возложенными на нее задачами и не приносит проблем ни конечным пользователям, ни их начальству, ни службе поддержки, ни специалистам по продажам. Да и самим разработчикам создание качественной программы приносит гораздо больше удовольствия.
Если попросить группу людей высказать свое мнение по поводу того, что такое качественное ПО, можно получить следующие варианты ответов:
Все
это действительно имеет
Информация о работе Критерии качества програмного обеспечения