Экспертные системы, их особенности

Автор работы: Пользователь скрыл имя, 14 Июня 2015 в 20:07, реферат

Описание работы

При создании ЭС возникает ряд затруднений. Это прежде всего связано с тем, что заказчик не всегда может точно сформулировать свои требования к разрабатываемой системе. Также возможно возникникновение трудностей чисто психологического порядка: при создании базы знаний системы эксперт может препятствовать передаче своих знаний, опасаясь, что впоследствии его заменят "машиной". Но эти страхи не обоснованы, т. к. ЭС не способны обучаться, они не обладают здравым смыслом, интуицией. Но в настоящее время ведутся разработки экспертных систем, реализующих идею самообучения. Также ЭС неприменимы в больших предметных областях и в тех областях, где отсутствуют эксперты.

Файлы: 1 файл

Информ.технол в менеджменте.rtf

— 347.73 Кб (Скачать файл)

Прежде чем делать какие- либо изменения в алгоритме перебора в глубину, нужно нужно решить, что понимать под глубиной вершины в графе. Согласно обычному определению, глубина вершины равна единице плюс глубина наиболее близкой родительской вершины, причем глубина начальной вершины предполагается равной нулю. Тогда поиск в глубину можно было бы получить, выбирая для раскрытия самую глубокую вершину списка ОТКРЫТ (без превышения граничной глубины). Когда порождаются вершины, уже имеющиеся в списке ОТКРЫТ, либо в списке ЗАКРЫТ, пересчет глубины такой вершины может оказаться необходимым.

Даже в том случае, когда перебор осуществляется на полном графе, множество вершин и указателей, построенное в процессе перебора , тем не менее образуют дерево. (Указатели указывают только на одну порождающую вершину.)

 

4.5. Обсуждение эвристической информации

Методы слепого перебора, полного перебора или поиска в глубину являются исчерпывающими процедурами поиска путей к целевой вершине. В принципе эти методы обеспечивают решение задачи поиска пути, но часто эти методы невозможно использовать, поскольку при переборе прийдется раскрыть слишком много вершин. Прежде чем нужный путь будет найден. Т.к. всегда имеются практические ограничения на время вычисления и объем памяти, то нужны другие методы, более эффективные. чем методы слепого перебора.

Для многих задач можно сформулировать правила, позволяющие уменьшить объем перебора. Все такие правила, используемые для ускорения поиска, зависят от специфической информации о задаче, представляемой в виде графа. Будем называть такую информацию эвристической информацией (помогающей найти решение) и называть использующие ее процедуры поиска эвристическими методами поиска. Один из путей уменьшить перебор состоит в выборе более "информированного" оператора Г, который не строит много не относящихся к делу вершин. Этот способ применим как в методе полного перебора, так и в методе перебора в глубину. Другой путь состоит в использовании эвристической информации для модификации шага (5) алгоритма перебора в глубину. Вместо того, чтобы размещать вновь построенные вершины в произвольном порядке в начале списка ОТКРЫТ, их можно расположить в нем некоторым определенным образом, зависящим от эвристической информации. Так, при переборе в глубину в первую очередь будет раскрываться та вершина, которая представляется наилучшей.

Более гибкий (и более дорогой) путь использования эвристической информации состоит в том, чтобы, согласно некоторому критерию, на каждом шаге переупорядочивать вершины списка ОТКРЫТ. В этом случае перебор мог бы идти дальше в тех участках границы, которые представляются наиболее перспективными. Для того, чтобы применить процедуру упорядочения, нам необходима мера, которая позволяла бы оценивать "перспективность" вершин. Такие меры называют оценочными функциями.

Иногда удается выделить эвристическую информацию (эвристику), уменьшающую усилия, затрачиваемые на перебор (до вершины, меньшей скажем, чем при поиске методом равных цен), без потери гарантированной возможности найти путь, обладающий наименьшей стоимостью. Чаще же используемые эвристики сильно уменьшают объем работы, связанной с перебором, ценой отказа от гарантии найти путь наименьшей стоимости в некоторых или во всех задачах.

 

4.5. Использование оценочных функций

Как мы уже отмечали, обычный способ использования эвристической информации связан с употреблением упорядочения перебора оценочных функций. Оценочная функция должна обеспечивать возможность ранжирования вершин- кандидатов на раскрытие- с тем, чтобы выделить ту вершину, которая с наибольшей вероятностью находится на лучшем пути к цели. Оценочные функции строились на основе различных соображений. Делались попытки определить вероятность того, что вершина расположена на лучшем пути. Предлагалось также использовать расстояние и другие меры различия между произвольной вершиной и множеством целевых вершин.

Предположим, что задана некоторая функция f, которая могла бы быть использована для упорядочения вершин перед их раскрытием. Через f(n) обозначим значение этой функции на вершине n. Эта функция совпадает с оценкой стоимости того из путей, идущих от начальной вершины к целевой и проходящих через вершину n, стоимость которого - наименьшая (из всех таких путей).

Условимся располагать вершины, предназначенные для раскрытия, в порядке возрастания их значений функции f. Тогда можно использовать некоторый алгоритм (подобный алгоритму равных цен), в котором для очередного раскрытия выбирается та вершина списка ОТКРЫТ, для которой значение f оказывается наименьшим. Будем называть такую процедуру алгоритм упорядоченного перебора.

Чтобы этот алгоритм упорядоченного перебора был применен для перебора на произвольных графах (а не только на деревьях), необходимо предусмотреть в нем возможность работы в случае построения вершин, которые уже имеются либо в списке ОТКРЫТ, либо в списке ЗАКРЫТ. При использовании некоторой произвольной функции f нужно учесть, что величина f для некоторой вершины из списка ЗАКРЫТ может понизится. если к ней найден новый путь (f(n) может зависеть от пути из s к n даже для вершин из списка ЗАКРЫТ). Следовательно, мы должны тогда перенести такие вершины назад в список ОТКРЫТ и позаботиться об изменении направлений соответствующих указателей.

После принятия этих необходимых мер алгоритм упорядоченного поиска может быть представлен такой последовательностью шагов:

1) Поместить начальную вершину s в список, называемый ОТКРЫТ, и вычислить f(s).

2) Если список ОТКРЫТ пуст, то на выход дается сигнал о неудаче; в противном случае переходи к следующему этапу.

3) Взять из списка ОТКРЫТ ту вершину, для которой f имеет наименьшее значение, и поместить ее в список ЗАКРЫТ. Дать этой вершине название n. (В случае совпадения значений выбирать вершину с минимальными f произвольно, но всегда отдавая предпочтение целевой вершине.)

4) Если n есть целевая вершина, то на выход выдать решающий путь, получаемый прослеживанием соответствующих указателей; в противном случае переходить к следующему шагу.

5) Раскрыть вершину n, построив все непосредственно следующие за ней вершины. (Если таковых нет переходить к шагу (2).) Для такой дочерней вершины ni вычислить значение f(ni).

6) Связать с теми из вершин ni , которых еще нет в списках ОТКРЫТ или ЗАКРЫТ, только что прочитанные значения f(ni). Поместить эти вершины в список ОТКРЫТ и провести от них к вершине n указатели.

7) Связать с теми из непосредственно следующих за n вершинами. которые уже были в списке ОТКРЫТ или ЗАКРЫТ, меньшие из прежних или только что вычисленных значений f. Поместить в список ОТКРЫТ те из непосредственно следующих за n вершин, для которых новое значение f оказалось ниже, и изменить направление указателей от всех вершин, для которых значение f уменьшилось, направив их к n..

8) Перейти к (2).

Общая структура алгоритма идентична структуре алгоритма равных цен (см. рис. 7), поэтому мы не приводим для него блок-схему. Отметим, что множество вершин и указателей, порождаемых этим алгоритмом, образует дерево (дерево перебора), причем на концах этого дерева расположены вершины из списка ОТКРЫТ.

 

4.6. Использование других эвристик..

4.6.1. Перебор этапами.

Использование эвристической информации может существенно уменьшить объем перебора, необходимого для поиска приемлемого пути. Следовательно, ее использование, позволяет осуществлять перебор на гораздо больших графах. и тем не менее могут возникнуть случаи, когда имеющаяся в нашем распоряжении память оказывается исчерпанной раньше, чем будет найден удовлетворительный путь. В этих случаях может быть полезным не отказываться полностью от продолжения перебора, а "отсечь" часть ветвей дерева, построенного к этому моменту в процессе перебора, освободив тем самым пространство памяти, необходимое для углубления перебора.

Такой процесс перебора может осуществляться этапами, которые отделяются друг от друга операциями отсечения дерева, необходимыми для освобождения памяти. В конце каждого этапа удерживается некоторое подмножество открытых вершин, например вершины с наименьшими значениями f. Наилучшие пути к этим вершинам запоминаются, а остальная часть дерева отбрасывается. Затем начинается перебор снова, уже от этих "лучших" открытых вершин. Этот процесс продолжается до тех пор, пока либо будет найдена целевая вершина, либо будут исчерпаны все ресурсы. Хотя весь процесс заканчивается построением некоторого пути, тем не менее у нас нет теперь гарантии, что этот путь будет оптимальным.

4.6.2. Ограничение числа дочерних вершин.

Другой путь уменьшения перебора, состоит в том, чтобы использовать более информированный оператор Г, который не порождал бы слишком много ненужных вершин, а порождал бы лишь вершины, расположенные на оптимальном пути, снимая тем самым полностью необходимость перебора.

Один из приемов, который может позволить снизить требуемый объем перебора, состоит в том, чтобы сразу же после раскрытия вершины отбросить почти все дочерние вершины, оставив лишь небольшое их число с наименьшими значениями функции f. Конечно, отброшенные вершины могут оказаться расположенными на наилучших (и даже только на наилучших) путях, так что только эксперимент может определить пригодность такого метода отсечения ветвей графа для конкретных задач.

4.6.3. Поочередное построение дочерних вершин.

Когда вершины, непосредственно следующие за некоторой, вычисляются с помощью операторов в пространстве состояний, то очевидно, что эти последующие вершины могут строиться по отдельности и независимо друг от друга. Кроме того, существуют случаи, когда применение всех применимых операторов было бы очень расточительно в смысле вычислительных затрат. Как указывалось выше, более информированный оператор Г выделял бы несколько наиболее перспективных операторов и строил бы только те последующие вершины, которые возникают в результате их применения. Более гибкий подход состоит в том, чтобы сначала допускать применение самого перспективного оператора (что приведет к одно из последующей вершине), оставляя в дальнейшем возможность в процессе перебора построить и другие вершины, непосредственно следующие за данной. Для того, чтобы воспользоваться этой идеей вместе с оценочными функциями для упорядочения вершин, в алгоритм упорядоченного перебора следует внести соответствующие изменения.

 

Список литературы:

1. И. Братко. Программирование на языке Пролог для искусст-

венного интеллекта.- М.: Мир, 1990.

2. Г. Долин. Что такое ЭС.- Компьютер Пресс, 1992/2.

3. Д. Р. Малпасс. Реляционный язык Пролог и его применение.

4. Д. Н. Марселлус. Программирование экспертных систем на Турбо Прологе.- М.: Финансы и статистика, 1994.

5. К. Нейлор. Как построить свою экспертную систему.- М.: Энергоатомиздат, 1991.

6. Н. Д. Нильсон. Искусственный интеллект. Методы поиска решений.- М.: Мир, 1973.

7. В. О. Сафонов. Экспертные системы- интеллектуальные помощники специалистов.- С.-Пб: Санкт-Петербургская организация общества "Знания" России, 1992.

8. К. Таунсенд, Д. Фохт. Проектирование и программная реализация экспертных систем на персональных ЭВМ.- М.: Финансы и статистика, 1990.

9. В. Н. Убейко. Экспертные системы.- М.: МАИ, 1992.

10. Д. Уотермен. Руководство по экспертным системам.- М.: Мир, 1980.

11. Д. Элти, М. Кумбс. Экспертные системы: концепции и примеры.- М.: Финансы и статистика, 1987.

 

81

 

 

Содержание

Глава 1. Экспертные системы, их особенности. Применение экспертных систем. История развития.

1.1. Определение экспертных систем. Главное достоинство и назначение

экспертных систем.

1.2. Отличие экспертных систем от других программных продуктов.

1.3. Отличительные особенности. Экспертные системы первого и второ-

го поколения.

1.4. Области применения.

а) Медицинская диагностика.

б) Прогнозирование.

в) Планирование.

г) Интерпретация.

д) Контроль и управление.

е) Диагностика неисправностей в механических и электрических

устройствах.

ж) Обучение.

1.5. Критерии использования экспертных систем для решения задач.

1.6. Ограничения в применении экспертных систем.

1.7. Преимущества экспертных систем перед человеком-экспертом.

1.8. История развития экспертных систем.

1.8.1. Основные линии развития экспертных систем.

1.8.2. Проблемы, возникающие при создании экспертных систем.

Перспективы развития.

Глава 2. Структура систем, основанных на знаниях.

2.1. Категории пользователей экспертных систем.

2.2. Подсистема приобретения знаний.

2.3. База знаний.

2.4. Подсистема вывода.

2.4.1. Подсистема вывода, способы логического вывода.

2.4.2. Компонента вывода.

2.4.3. Управляющий компонент.

2.5. Диалог с экспертной системой.Объяснение.

Глава 3. Стратегии управления выводом.

3.1. Разработка стратегии управления выводом.

3.2. Повышение эффективности поиска.

а) Сопоставление методов поиска в глубину и в ширину.

б) Альфа-бета алгорнтм.

в) Разбиение на подзадачи.

г) Использование формальной логики при решении задач.

3.3. Представление задач в пространстве состояний.

3.3.1. Описание состояний.

3.3.2. Состояния и операторы.

3.3.3. Запись в виде графа.

Глава 4. Методы поиска в пространстве состояний.

4.1. Процессы поиска на графе.

4.2. Методы полного перебора.

4.2.1.Метод полного перебора.

4.2.2. Метод равных цен.

4.3. Метод перебора в глубину.

4.4. Изменения при переборе на произвольных графах.

4.5. Обсуждение эвристической информации.

4.6. Использование оценочных функций.

4.7. Использование других эвристик.

4.7.1. Перебор этапами.

4.7.2. Ограничение числа дочерних вершин.

4.7.3. Поочередное построение дочерних вершин.

Приложение 1.

Приложение 2.


Информация о работе Экспертные системы, их особенности