Искусственный интелект

Автор работы: Пользователь скрыл имя, 09 Февраля 2011 в 09:06, курсовая работа

Описание работы

Тип задачи определяет метод, наиболее подходящий для ее решения. Задачи, которые сводятся к процедуральному анализу, вообще говоря, лучше всего решаются на компьютере. Учетные и аналитические задачи служат примерами процедуральных задач, решаемых компьютером быстрее и надежнее, чем человеком. Задачи же, связанные с использованием аналогии или индукции, эффективнее решаются человеком. Задачи, требующие дедуктивных и индуктивных рассуждений, представляются наиболее вероятными кандидатами для решения с помощью экспертных систем (систем, основанных на знаниях).

Содержание работы

ВВЕДЕНИЕ 3


1 ИСТОРИЯ СОЗДАНИЯ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 5

1.1 Исторический обзор развития искусственного интеллекта 5

1.2 Системы искусственного интеллекта 10

1.3 Построение систем искусственного интеллекта 12


2 РАЗВИТИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 16

2.1 Знания и модели их представления 16

2.2 Инженерия знаний 19

2.3 Модели приобретения знаний 22


ЗАКЛЮЧЕНИЕ 27


СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 29

Файлы: 1 файл

Искуственный интеллект 29.docx

— 65.50 Кб (Скачать файл)

     1.3 Построение систем  искусственного интеллекта 

     Существуют  различные подходы к построению систем искусственного интеллекта. Это  разделение не является историческим, когда одно мнение постепенно сменяет  другое, и различные подходы существуют и сейчас. Кроме того, поскольку  по-настоящему полных систем искусственного интеллекта в настоящее время  нет, то нельзя сказать, что какой-то подход является правильным, а какой-то ошибочным.

     Для начала кратко рассмотрим логический подход. Почему он возник? Ведь человек  занимается отнюдь не только логическими  измышлениями. Это высказывание конечно  верно, но именно способность к логическому  мышлению очень сильно отличает человека от животных.

     Основой для данного логического подхода  служит Булева алгебра. Каждый программист  знаком с нею и с логическими  операторами с тех пор, когда  он осваивал оператор IF. Свое дальнейшее развитие Булева алгебра получила в  виде исчисления предикатов - в котором  она расширена за счет введения предметных символов, отношений между ними, кванторов существования и всеобщности. Практически каждая система искусственного интеллекта, построенная на логическом принципе, представляет собой машину доказательства теорем. При этом исходные данные хранятся в базе данных в  виде аксиом, правила логического  вывода как отношения между ними. Кроме того, каждая такая машина имеет блок генерации цели, и система  вывода пытается доказать данную цель как теорему. Если цель доказана, то трассировка примененных правил позволяет получить цепочку действий, необходимых для реализации поставленной цели. Мощность такой системы определяется возможностями генератора целей  и машиной доказательства теорем.

     Конечно можно сказать, что выразительности  алгебры высказываний не хватит для  полноценной реализации искусственного интеллекта, но стоит вспомнить, что основой всех существующих ЭВМ является бит - ячейка памяти, которая может принимать значения только 0 и 1. Таким образом было бы логично предположить, что все, что возможно реализовать на ЭВМ, можно было бы реализовать и в виде логики предикатов. Хотя здесь ничего не говорится о том, за какое время.

     Добиться  большей выразительности логическому  подходу позволяет такое сравнительно новое направление, как нечеткая логика. Основным ее отличием является то, что правдивость высказывания может принимать в ней кроме  да/нет (1/0) еще и промежуточные  значения - не знаю (0.5), пациент скорее жив, чем мертв (0.75), пациент скорее мертв, чем жив (0.25). Данный подход больше похож на мышление человека, поскольку  он на вопросы редко отвечает только да или нет. Хотя правда на экзамене будут приниматься только ответы из разряда классической булевой  алгебры.

     Для большинства логических методов  характерна большая трудоемкость, поскольку  во время поиска доказательства возможен полный перебор вариантов. Поэтому  данный подход требует эффективной  реализации вычислительного процесса, и хорошая работа обычно гарантируется  при сравнительно небольшом размере  базы данных.

     Под структурным подходом мы подразумеваем  здесь попытки построения искусственного интеллекта путем моделирования  структуры человеческого мозга. Одной из первых таких попыток  был перцептрон Френка Розенблатта. Основной моделируемой структурной  единицей в перцептронах (как и  в большинстве других вариантов  моделирования мозга) является нейрон.

     Позднее возникли и другие модели, которые  в простонародье обычно известны под термином "нейронные сети" (НС). Эти модели различаются по строению отдельных нейронов, по топологии  связей между ними и по алгоритмам обучения. Среди наиболее известных  сейчас вариантов НС можно назвать  НС с обратным распространением ошибки, сети Хопфилда, стохастические нейронные  сети.

     НС  наиболее успешно применяются в  задачах распознавания образов, в том числе сильно зашумленных, однако имеются и примеры успешного  применения их для построения собственно систем искусственного интеллекта, это  уже ранее упоминавшийся ТАИР.

     Для моделей, построенных по мотивам  человеческого мозга характерна не слишком большая выразительность, легкое распараллеливание алгоритмов, и связанная с этим высокая  производительность параллельно реализованных  НС. Также для таких сетей характерно одно свойство, которое очень сближает их с человеческим мозгом - нейронные  сети работают даже при условии неполной информации об окружающей среде, то есть как и человек, они на вопросы  могут отвечать не только "да" и "нет" но и "не знаю точно, но скорее да".

     Довольно  большое распространение получил  и эволюционный подход. При построении систем искусственного интеллекта по данному подходу основное внимание уделяется построению начальной  модели, и правилам, по которым она может изменяться (эволюционировать). Причем модель может быть составлена по самым различным методам, это может быть и НС и набор логических правил и любая другая модель. После этого мы включаем компьютер и он, на основании проверки моделей отбирает самые лучшие из них, на основании которых по самым различным правилам генерируются новые модели, из которых опять выбираются самые лучшие и т. д.

     В принципе можно сказать, что эволюционных моделей как таковых не существует, существует только эволюционные алгоритмы  обучения, но модели, полученные при  эволюционном подходе имеют некоторые  характерные особенности, что позволяет  выделить их в отдельный класс.

     Такими  особенностями являются перенесение  основной работы разработчика с построения модели на алгоритм ее модификации  и то, что полученные модели практически  не сопутствуют извлечению новых  знаний о среде, окружающей систему  искусственного интеллекта, то есть она  становится как бы вещью в себе.

     Еще один широко используемый подход к  построению систем искусственного интеллекта - имитационный. Данный подход является классическим для кибернетики с  одним из ее базовых понятий - "черным ящиком" (ЧЯ). ЧЯ - устройство, программный  модуль или набор данных, информация о внутренней структуре и содержании которых отсутствуют полностью, но известны спецификации входных и  выходных данных. Объект, поведение  которого имитируется, как раз и  представляет собой такой "черный ящик". Нам не важно, что у него и у модели внутри и как он функционирует, главное, чтобы наша модель в аналогичных  ситуациях вела себя точно так  же.

     Таким образом здесь моделируется другое свойство человека - способность копировать то, что делают другие, не вдаваясь в  подробности, зачем это нужно. Зачастую эта способность экономит ему  массу времени, особенно в начале его жизни.

     Основным  недостатком имитационного подхода  также является низкая информационная способность большинства моделей, построенных с его помощью.

     С ЧЯ связана одна очень интересная идея. Кто бы хотел жить вечно? Я  думаю, что почти все ответят  на этот вопрос "я".

     Представим  себе, что за нами наблюдает какое-то устройство, которое следит за тем, что в каких ситуациях мы делаем, говорим. Наблюдение идет за величинами, которые поступают к нам на вход (зрение, слух, вкус, тактильные, вестибулярные  и т. д.) и за величинами, которые  выходят от нас (речь, движение и  др.). Таким образом человек выступает  здесь как типичный ЧЯ.

     Далее это устройство пытается отстроить  какую-то модель таким образом, чтобы  при определенных сигналах на входе  человека, она выдавала на выходе те же данные, что и человек. Если данная затея будет когда-нибудь реализована, то для всех посторонних наблюдателей такая модель будет той же личностью, что и реальный человек. А после  его смерти она, будет высказывать  те мысли, которые предположительно высказывал бы и смоделированный человек.

     Мы  можем пойти дальше и скопировать  эту модель и получить брата близнеца с точно такими же "мыслями".

     Можно сказать, что "это конечно все  интересно, но при чем тут я? Ведь эта модель только для других будет  являться мной, но внутри ее будет пустота. Копируются только внешние атрибуты, но я после смерти уже не буду думать, мое сознание погаснет (для  верующих людей слово "погаснет" необходимо заменить на "покинет  этот мир") ". Что ж это так. Но попробуем пойти дальше.

     Согласно  философским представлениям автора данного курса, сознание представляет собой сравнительно небольшую надстройку над нашим подсознанием, которая  следит за активностью некоторых  центров головного мозга, таких  как центр речи, конечной обработки  зрительных образов, после чего "возвращает" эти образы на начальные ступени  обработки данной информации. При  этом происходит повторная обработка  этих образов, мы как бы видим и  слышим, что думает наш мозг. При  этом появляется возможность мысленного моделирования окружающей действительности при нашем "активном" участии  в данном процессе. И именно наш  процесс наблюдения за деятельностью  этих немногих центров является тем, что мы называем сознанием. Если мы "видим" и "слышим" наши мысли, мы в сознании, если нет, то мы находимся  в бессознательном состоянии.

     Если  бы мы смогли смоделировать работу именно этих немногих "сознательных" нервных центров (работа которых  правда основана на деятельности всего  остального мозга) в качестве одного ЧЯ, и работу "супервизора" в  качестве другого ЧЯ, то можно было бы с уверенностью говорить, что "да, данная модель думает, причем так же, как и я". Здесь я ничего не хочу говорить о том, как получить данные о работе этих нервных центров, поскольку на мой взгляд сегодня  нет ничего такого, что позволило  бы следить за мозгом человека годами и при этом не мешало бы его работе и жизни.

     И заканчивая беглое ознакомление с различными методами и подходами к построению систем искусственного интеллекта, хотелось бы отметить, что на практике очень  четкой границы между ними нет. Очень  часто встречаются смешанные  системы, где часть работы выполняется  по одному типу, а часть по-другому. 
 
 
 
 
 
 
 
 

2 РАЗВИТИЕ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА 

2.1 Знания и модели их представления 

     Для специалистов в области искусственного интеллекта термин «знания» означает информацию, которая необходима программе, чтобы она вела себя «интеллектуально».

     Функционирование  средств интеллектуального интерфейса опирается на развитые методы работы со знаниями: их представление, хранение, преобразование и т. п.

     Под термином «знания» при этом понимается вся совокупность информации, необходимой  для решения задачи, включающая в  себя, в том числе информацию о:

  • системе понятий предметной области, в которой решаются задачи;
  • системе понятий формальных моделей, на основе которых решаются задачи;
  • соответствии систем понятий, упомянутых выше;
  • текущем состоянии предметной области;
  • методах решения задач.

     При этом система знаний должна быть организована таким образом, чтобы обеспечить взаимодействие вычислительной системы  с пользователем в системе  понятий и терминов предметной области.

     Что же такое знания и чем они отличаются от данных в системах машинной обработки?

     Знания -- это целостная и систематизированная  совокупность понятий о закономерностях  природы, общества и мышления, накопленных  человечеством в процессе активной преобразующей производственной деятельности и направленная на дальнейшее познание и изменение объективного мира.

     Следовательно, интеллектуальная деятельность человека связана с поиском решений  в новых, нестандартных ситуациях. Отсюда, задача называется интеллектуальной, если алгоритм ее решения априори  неизвестен. При этом задача и ее решение понимаются в самом широком  смысле. Решение задачи -- это любая  деятельность (человека или машины), связанная с выработкой планов и  действий, необходимых для достижения определенной цели; выводом новых  закономерностей и т. п. Любая  интеллектуальная деятельность опирается  на знания о предметной области, в  которой ставятся и решаются задачи. Предметной областью обычно называют совокупность взаимосвязанных сведений, необходимых и достаточных для  решения данной задачи или определенной совокупности задач.

     Знания  о предметной области включают описания объектов, явлений, фактов, а также  отношений между ними.

Информация о работе Искусственный интелект