Аппаратные и программные средства разработки мультимедийных продуктов

Автор работы: Пользователь скрыл имя, 27 Января 2011 в 07:45, реферат

Описание работы

Термин мультимедиа используют для характеристики компьютерных систем, графической, звуковой, видео и иной информации. Существенно, что этот синтез и обработку информации сегодня удаётся выполнять практически в реальном времени, то есть без ощутимой пользователем задержки во времени. Расцвет мультимедиа в середине 90-х годов связывают с быстродействием и памятью, достигнутыми в системах Pentium, и в частности, с возможностями записи и воспроизведения больших объёмов информации с помощью компакт-дисков CD-ROM. До этого времени по техническим причинам использование компьютерных средств для нужд образования, науки, искусства выглядело довольно блекло по сравнению с традиционными средствами. Однако сегодня средства мультимедиа имитируют реальность для многих целей вполне удовлетворительно.

Содержание работы

Введение…………………………………………………………………………...3

1.Мультимедийные технологии……………………...……………………..6
2.Аппаратные средства создания проектов………..……………………...9
1.Звуковые карты……………………………………………………...9
2.Воспроизведение звука…………………………………………….11
3.Манипуляторы……………………………………………………...13
4.Виртуальная реальность…………………...……………………...14
5.Лазерные диски, CD-ROM………………………………………...17
6.Видеокарты…………………………………………………………19
7.TV-тюнеры………………………………………………………….21
8.Фрейм грабберы……………………………………………………21
9.Преобразователи VGA-TV………………………………………...21
10.MPEG-плееры………………………………………………………22
3.Программные средства создания проектов……………………………..23
1.Графика и фотоизображения……………………………………...23
2.2D-графика и анимация……………………………………………25
3.3D-графика и анимация……………………………………………28
4.Видео………………………………………………………………..31
5.Цифровой звук……………………………………………………...35
6.Презентация и другие мультимедиа-продукты…………………..38
4.Этапы разработки проекта……………………………………………….42
1.Процесс создания мультимедийного продукта…………………..42
5.Мультимедийный компьютер……………………………………………43
1.Аппаратный состав мультимедийного компьютера……………..43
2.Программный состав мультимедийного компьютера…………...45
3.Операционная система…………………………………………….45
4.Прикладные мультимедийные приложения……………………...45
Заключение……………………………………………………………………….47

Список использованной литературы…………………………………………...49

Файлы: 1 файл

Реферат.docx

— 143.73 Кб (Скачать файл)

·     возможность включения в содержание диска баз данных, методик обработки образов, анимации (к примеру, сопровождение рассказа о композиции картины графической анимационной демонстрацией геометрических построений ее композиции) и т.д.;

·           возможность подключения к глобальной сети Internet;

·     возможность работы с различными приложениями (текстовыми, графическими и звуковыми редакторами, картографической информацией);

·   возможность создания собственных "галерей" (выборок) из представляемой в продукте информации (режим "карман" или "мои пометки");

·           возможность "запоминания пройденного пути" и создания "закладок" на заинтересовавшей экранной "странице";

·           возможность автоматического просмотра всего содержания продукта ("слайд-шоу") или создания анимированного и озвученного "путеводителя-гида" по продукту ("говорящей и показывающей инструкции пользователя"); включение в состав продукта игровых компонентов с информационными составляющими;

·     возможность "свободной" навигации по информации и выхода в основное меню (укрупненное содержание), на полное оглавление или вовсе из программы в любой точке продукта.

        Появление систем мультимедиа, безусловно, производит революционные изменения в таких областях, как образование, компьютерный тренинг, во многих сферах профессиональной деятельности, науки, искусства, в компьютерных играх и т.д.

        Возможности технологии мультимедиа безграничны. В бизнес-приложениях мультимедиа в основном применяются для обучения и проведения презентаций.

        Благодаря наличию обратной связи и живой среде общения, системы обучения на базе мультимедиа обладают потрясающей эффективностью и существенно повышают мотивацию обучения. Уже давно появились программы, обучающие пользователя иностранным языкам, которые в интерактивной форме предлагают пользователю пройти несколько уроков, от изучения фонетики и алфавита до пополнения словарного запаса и написания диктанта. Благодаря встроенной системе распознавания речи, осуществляется контроль произношения обучаемого. Пожалуй, самая главная особенность таких обучающих программ – их ненавязчивость, ведь

пользователь  сам определяет место, время и  продолжительность занятия. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2. АППАРАТНЫЕ СРЕДСТВА СОЗДАНИЯ ПРОЕКТОВ

         Для построения мультимедиа системы необходима дополнительная аппаратная поддержка: аналого-цифровые и цифроаналоговые преобразователи для перевода аналоговых аудио и видео сигналов в цифровой эквивалент и обратно, видеопроцессоры для преобразования обычных телевизионных сигналов к виду, воспроизводимому электронно лучевой трубкой дисплея, декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров и так далее. Все оборудование отвечающее за звук объединяются в так называемые звуковые карты, а за видео в видео карты. Дальше рассматривается подробно и в отдельности об устройстве и характеристиках звуковых карт, видео карт и CD-ROM приводах.

Аппаратные  средства мультимедиа:

·        Средства звукозаписи;

·        Звуковоспроизведении;

·        Манипуляторы;

·        Средства «виртуальной реальности»;

·        Носители информации (CD-ROM);

·        Средства передачи;

·        Средства записи;

·        Обработки изображения;

                                           

2.1. Звуковые карты 

        С течением времени перечень задач выполняемых на ПК вышел за рамки просто использования электронных таблиц или текстовых редакторов. Компакт- диски со звуковыми файлами, подготовка мультимедиа призентаций, проведение видео конференций и телефонные средства, а также игры и прослушивание аудио CD для всего этого необходимо чтобы звук стал неотъемлемой частью ПК. Для этого необходима звуковая карта. Любители игр будут удовлетворены новыми возможностями объемного звучания.

        Для звуковых карт IBM совместимых компьютеров прослеживаются следующие тенденции:

     Во-первых, для воспроизведения звука вместо частотной модуляции (FM)

теперь  все больше используют табличный (wavetable) или WT синтез, сигнал

полученный  таким образом, более похож на звук реальных инструментов, чем при FM синтезе. Используя соответствующие алгоритмы, даже только по одному тону музыкального инструмента можно воспроизводить все остальное, то есть восстановить его полное звучание. Выборки таких сигналов хранятся либо в постоянно запоминающем устройстве (ROM) устройства, либо программно загружается в оперативную память (RAM) звуковой карты.

        В более дешевых платах чаще реализован частотно модулированный синтез с использованием синусоидальным колебаний, что в результате при водит к не совсем точному звучанию инструментов, отражение звука и рева, характерных для последнего поколения игр в игровых залах. Расположенная на плате микросхема для волнового синтеза хранит записанные заранее оцифрованные образцы (Samples) звучания музыкальных инструментов и звуковых эффектов. Достигаемые результаты очевидны музыкальные записи получаются более убедительны, а азартные игроки более впечатлительны.

Пионером  в реализации WT синтеза стала  в 1984 году фирма Ensoning. Вскоре WT синтезаторы стали производить такие известные фирмы, как Emu, Korg, Roland и Yamaha.

        Фирмы производители звуковых карт добавляют WT синтез двумя способами либо встраивают на звуковую карту в виде микросхем, либо реализуя в виде дочерней платы. Во втором случае звуковая карта дешевле, но суммарная стоимость основной и дочерней платы выше.

        Во-вторых, это совместимость звуковых карт. За сравнительно не долгую историю развития средств мультимедиа появилось уже несколько основных стандартов де-факто на звуковые карты. Так почти все звуковые карты, предназначенные для игр и развлечений, поддерживают совместимость с Adlib и Sound Blaster. Все звуковые карты, ориентированные на бизнес- приложения, совместимы обычно с MS Windows Sound Sistem фирмы Microsoft.

        В-третьих, одним из компонентов современных звуковых карт стал сигнальный процессор DSP(Digital Signal Processor) к возможности функциональным обязанностям этого устройства можно отнести: распознание речи, трехмерное звучание, WT синтез, сжатие и декомпрессия аудиосигналов. Количество звуковых карт, оснащенных DSP, не так велико. Причина этого то, что такое достаточно мощное устройство помогает только при решении строго определенных задач.

        Как правило, DSP устройство достаточно дорогое, поэтому сразу устанавливается только на профессиональных музыкальных картах. Одним из мощных DSP производителей сейчас является фирма Texas Instruments.

        В-четвертых, появилась устойчивая тенденция интегрирования функций звуковых карт на системной плате. Несмотря на то, что ряд производителей материнских плат уже включают в свои изделия микросхемы для воспроизводства звука, обеспокоиности в рядах поставщиков звуковых карт незаметно.

        Потенциальная проблема при использовании встроенных средств обработки звука состоит в ограниченности системных ресурсов IBM PC совместимых компьютеров, а именно в возможности конфликтов по каналам прямого доступа к памяти (DMA).

        Пример такой платы это системная плата OPTi495 SLC, в которой используется 16-разрядный звуковой стереокодек AD 1848 фирмы ANALOG DEVICES.

       В-пятых, стремление к более естественному воспроизведению звука

заставляет  фирмы производителей использовать технологии объемного или

трехмерного (3D) звучания.

        Самое модное направление в области воспроизведения звука в наши дни

предоставляет так называемые объемность звучания. Применение этих эффектов объемного звучания позволяет расширить стереопространство, что в свою очередь придает большую глубину ограниченного поля воспроизведения присущем не большим близко расположенным друг к другу колонок.

       В-шестых, это подключение приводов CD-ROM. Практически все звуковые карты имеют встроенные интерфейсы для подключения приводов CD-ROM одной или сразу всех трех фирм Sony, Panasonic/Matsushita и Mitsumi. Тем не менее большинство звуковых карт рассчитано на подключение приводов Sony.

        Появились карты и приводы поддерживающие стандартный интерфейс ATA(IDE), используемый для компьютеров с винчестером.

        В-седьмых, на картах используется режим DualDMA то есть двойной прямой доступ к памяти. С помощью двух каналов DMA можно реализовать одновременно запись и воспроизведение.

        И последние это устойчивое внедрение звуковых технологий в телекомуникации.

        Звуковые карты приобретаются в 90% случаев для игр, из оставшихся 10% для речевого сопровождения мультимедиа программ. В таком случае потребительские качества зависят только от ЦАП (цифро-аналогового преобразователя) и от усилителя звуковой частоты. Еще более важным является совместимость со стандартом Sound Blaster, так как далеко не все программы будут поддерживать менее распространенные стандарты.

        В набор Звуковых карт входят драйвера, утилиты, программы записи и

воспроизведения звука, средства для подготовления  и произведения презентаций, энциклопедий, игр.

2.2. Воспроизведение звука

        Современные средства мультимедиа дают качество стереозвука, удовлетворяющее самым придирчивым требованиям HiFi (сокращенно это означает высокую верность воспроизведения). Современные платы синтеза звука способны синтезировать звучание одновременно 20 и более музыкальных инструментов, создавая при этом множество специальных звуковых эффектов - плавное изменение громкости каждого инструмента, вибрацию звуков, их модуляцию по частоте и т.д. Появилась возможность записи звуковых сигналов на магнитные носители ПК в виде файлов и их сложной математической обработки - например наложения сигналов, фильтрации шумов и т.д.

        Сейчас HiFi-звучание неразрывно связано с лазерными аудиодисками (или компакт-дисками CD), использующими цифровые методы кодирования звуковых сигналов. Диск представляет из себя пластмассовый кружок, на поверхности которого имеются микроскопические углубления, созданные записывающим устройством (точнее говоря, технологическим процессом тиражирования дисков с некоторого оригинала). Они покрыты "толстым" слоем прозрачного лака, предохраняющим поверхность диска от повреждений. Рабочей является только одна поверхность, вторая используется для красочной маркировки.

          Для проигрывания диска используется полупроводниковый лазерный диод с фокусирующей оптической системой. Область диска под лаком с микроуглублениями находится в фокусе, и отраженный от нее сигнал воспринимается фотодиодом, расположенным рядом с лазерным излучателем. Диск вращается с переменной скоростью, что дает постоянную линейную скорость считывания данных. Наружная поверхность диска находится не в фокусе. Поэтому ее загрязнения и даже царапины практически не влияют на воспроизведение. Тем более что специальная электронная система коррекции ошибок устраняет их проникновение в данные.

        Тряска, вибрация и магнитные поля - бич граммофонных проигрывателей и магнитофонов - на работу дисковых проигрывателей практически не влияют.

        Сигнал фотодиода имеет форму импульсов. Для работы проигрывателя важно лишь наличие или отсутствие импульса - т.е. логический 0 или 1. Ну прямо как в компьютере, скажете вы и будете правы. Оптический диск как бы идеально подходит для создания ПЗУ (ROM) компьютера с огромной емкостью. Но история распорядилась по иному - такой диск был вначале задуман как средство цифровой записи звука для обычных целей HiFi- звуковоспроизведения. И лишь в начале 90-х годов он стал использоваться для записи компьютерных данных и программ в связи с практической реализацией идей мультимедиа.

        В основе цифровой записи лежит представление мгновенного значения звукового сигнала его численным значением. Оно дискретное, т.е. выражается целым числом. Звуковой сигнал обычно имеет аналоговое (непрерывное) представление.

        И чтобы представить его в числовой форме, надо провести дискретизацию сигнала, представив его конечным числом уровней. Для HiFi-

звуковоспроизведения  в первом приближении хватает 65536 ступенек цифрового представления мгновенного значения цифрового сигнала. Это означает, что достаточно иметь 16 разрядов аналого-цифрового преобразования звукового сигнала. Первые платы звука ПК имели разрядность преобразования 8 и квантовали звуковой сигнал 128 ступеньками уровня. Это, конечно, было явно недостаточно для HiFi- звуковоспроизведения.

Информация о работе Аппаратные и программные средства разработки мультимедийных продуктов