Автор работы: Пользователь скрыл имя, 04 Октября 2015 в 16:52, реферат
Не зависимо от степени сложности все органические формы содержат белки и нуклеиновые кислоты – биологические полимеры. Белки и нуклеиновые кислоты тесно взаимодействуют в ходе обменных процессов, протекающих в клетке. Они входят в состав хромосом. Собственно, хромосома представляет собой нуклеопротеидную структуру, состоящую из дезоксирибонуклеиновой кислоты, основных белков гистонов, негистоновых белков и небольшого количества рибонуклеиновой кислоты. Белки оказались генетическими производными нуклеиновых кислот.
Роль нуклеиновых кислот в наследственности…………………………….3-8
Заключение……………………………………………………………………9
Список использованной литературы……………………………………...…10
Информация о синтезе белка с определенными свойствами заключена в нуклеотидной последовательности матричных или информационных РНК (и-РНК, м-РНК), которые, в свою очередь, синтезируются на определенных участках ДНК. Процесс синтеза м-РНК называют транскрипцией. Синтез м-РНК начинается с обнаружения РНК-полимеразы, участка в молекуле ДНК, называемого промотором. В этом усатке РНК-полимераза раскручивает спираль ДНК и на одной из них фермент синтезирует м-РНК. Цепь, на которой происходит сборка молекул м-РНК, называют кодогенной. Сборка рибонуклеотидов в цепь происходит с соблюдением принципов комплементарности и антипараллельности, РНК-полимераза продвигается по кодогенной цепи ДНК и осуществляет синтез м-РНК до тех пор, пока не встречает на своем пути терминатор транскрипции (переписывания) – специфическую нуклеотидную последовательность. На участке расположения терминатора транскрипции РНК-полимераза отделяется от цепи ДНК и от синтезированной молекулы м-РНК. Промотор (участок молекулы ДНК), транскретируемая последовательность и терминатор образуют единицу транскрипции под названием транскриптон. После прохождения РНК-полимеразы вдоль молекулы ДНК, пройденные участки объединяются снова в двойную спираль. Образовавшаяся матричная РНК содержит точную информацию о белке, записанную в определенном участке ДНК. Три рядом расположенных нуклеотидов м-РНК шифрует последовательность аминокислот в пептидной цепи белков. Каждому триплету (три нуклеотида – кодон) соответствуют определенные аминокислоты. Существует большое разнообразие и-РНК. Объясняется это тем, что в клетке много разнообразных белков, строение каждого из которых кодируется своим геном, с которого и-РНК считывает информацию.[5]
Транспортные РНК характеризуются небольшими размерами. Они состоят из 75 - 90 нуклеотидов. В силу комплементарности разных участков они замкнуты на себя в нескольких местах, в результате чего вторичная структура представлена в виде клеверного листа с двухцепочным стеблем и тремя одноцепочными петлями. Известно более 60 т-РНК, которые отличаются между собой первичной структурой, т. е. последовательностью оснований. Каждая аминокислота присоединяется к определеной т-РНК. Характерной чертой т-РНК является наличие в головке средней петли трех нуклеотидов получивших название антикодон. Антикодон комплементарен определенному кодону м-РНК. При помощи антикодона т-РНК, кооперируясь с соответствующим кодоном и-РНК, обеспечивает включение определенной аминокислоты в полипептидную цепь синтезируемого белка.[5]
Наследственная информация, хранящаяся в молекулах ДНК, затем «записанная» на м-РНК, расшифровывается благодаря двум процессам. Сначала фермент аминоацил- т-РНК-синтетаза обеспечивает содержание т-РНК с транспортируемой ею аминокислотой, затем аминоацил т-РНК комплементарно соединяе6тся с м-РНК благодаря взаимодействию антикодона с кодоном. Таким образом, с помощью т-РНК язык нуклеотидной цепи м-РНК переводится в язык аминокислотной последовательности пептида.[5]
Предполагают, что боковые петли осуществляют связывание т-РНК с рибосомой и со специфической аминоацил- т-РНК-синтетазой.[5]
Перевод генетической информации с языка нуклеотидов на язык аминокислот осуществляется на рибосомах. Рибосомы представляют собой сложные комплексы рибосомной рибонуклеиновой кислоты (р-РНК) и разнообразных белков. Рибосомная РНК является структурным компонентом рибосом и обеспечивает связывание и-РНК с рибосомой в процессе биосинтеза белка и взаимодействие ее с т-РНК. Рибосомная РНК накапливается в ядрышках, где происходит образование субчастиц рибосом путем объединения белков с р-РНК. Затем субчастицы рибосом транспортируются через поры ядерной мембраны в цитоплазму.[5]
Рибосомная РНК имеет молекулярный вес 1,5-2 млн. и состоит из 4000-6000 нуклеотидов. Эта нуклеиновая кислота, входящая в состав рибосом, наряду с многочисленными белками выполняет не только структурную, но ферментативную роль. [5]
Информация о работе Роль нуклеиновых кислот в наследственности