Проводниковые материалы

Автор работы: Пользователь скрыл имя, 23 Мая 2016 в 07:59, реферат

Описание работы

Механизм прохождения тока в металлах — как в твердом, так и в жидком состоянии — обусловлен движением (дрейфом) свободных электронов под воздействием электрического поля; поэтому металлы называют проводниками с электронной электропроводностью или проводниками первого рода. Проводниками второго рода, или электролитами, являются растворы (в частности, водные) кислот, щелочей и солей. Прохождение тока через эти вещества связано с переносом вместе с электрическими зарядами ионов в соответствии с законами Фарадея, вследствие чего состав электролита постепенно изменяется, а на электродах выделяются продукты электролиза. Ионные кристаллы в расплавленном состоянии также являются проводниками второго рода.

Файлы: 1 файл

ВВЕДЕНИЕ.docx

— 85.57 Кб (Скачать файл)
  • Медь.

Преимущества меди, обеспечивающие ей широкое применение в качестве проводникового материала, следующие:

1) малое удельное сопротивление (из всех материалов только  серебро имеет несколько меньшее  удельное сопротивление, чем медь);

2) достаточно высокая  механическая прочность;

3) удовлетворительная в  большинстве случаев стойкость  по отношению к коррозии (медь  окисляется на воздухе даже  в условиях высокой влажности  значительно медленнее, чем, например, железо; интенсивное окисление меди  происходит только при повышенных  температурах);

4) хорошая обрабатываемость (медь прокатывается в листы, ленты  и протягивается в проволоку, толщина которой может быть  доведена до тысячных долей  миллиметра);

5) относительная легкость  пайки и сварки.

Медь получают чаще всего путем переработки сульфидных руд. После нескольких плавок руды и обжигов с интенсивным дутьем медь, предназначенная для электротехники, обязательно проходит процесс электролитической очистки. Полученные после электролиза катодные пластины меди переплавляют в болванки массой 80—90 кг, которые прокатывают и протягивают в изделия требующегося поперечного сечения. При изготовлении проволоки болванки сперва подвергают горячей прокатке в так называемую катанку диаметром 6,5—7,2 мм; затем катанку протравливают в слабом растворе серной кислоты, чтобы удалить с ее поверхности оксид меди СuО, образующийся при нагреве, а затем уже протягивают без подогрева в проволоку нужных диаметров — до 0,03—0,02 мм.

Стандартная медь, в процентах по отношению к удельной проводимости которой иногда выражают удельные проводимости металлов и сплавов, в отожженном состоянии при 20 °С имеет удельную проводимость 58 МСм/м, т. е. r = 0,017241 мкОм×м. Твердую медь употребляют там, где надо обеспечить особо высокую механическую прочность, твердость и сопротивляемость истиранию (для контактных проводов, для шин распределительных устройств, для коллекторных пластин электрических машин и пр.). Мягкую медь в виде проволок круглого и прямоугольного сечения применяют главным образом в качестве токопроводящих жил кабелей и обмоточных проводов, где важна гибкость и пластичность (не должна пружинить при изгибе), а не прочность. Медь является сравнительно дорогим и дефицитным материалом. Поэтому она должна расходоваться весьма экономно. Отходы меди на электротехнических предприятиях необходимо тщательно собирать; важно не смешивать их с другими металлами, а также с менее чистой (не электротехнической) медью, чтобы можно было эти отходы переплавить и вновь использовать в качестве электротехнической меди. Медь как проводниковый материал все шире заменяется другими металлами, в особенности алюминием.

Сплавы меди . В отдельных случаях помимо чистой меди в качестве проводникового материала применяются ее сплавы с оловом, кремнием, фосфором, бериллием, хромом, магнием, кадмием. Такие сплавы, носящие название бронз, при правильно подобранном составе имеют значительно более высокие механические свойства, чем чистая медь: sр бронз может быть 800—1200 МПа и более. Бронзы широко применяют для изготовления токопроводящих пружин и т. п. Введение в медь кадмия при сравнительно малом снижении удельной проводимости значительно повышает механическую прочность и твердость. Кадмиевую бронзу применяют для контактных проводов и коллекторных пластин особо ответственного назначения. Еще большей механической прочностью обладает бериллиевая бронза (sр —до 1350 МПа). Сплав меди с цинком — латунь — обладает достаточно высоким относительным удлинением перед разрывом при повышенном по сравнению с чистой медью пределе прочности при растяжении. Это дает латуни технологические преимущества перед медью при обработке штамповкой, глубокой вытяжкой и т. п. В соответствии с этим латунь применяют в электротехнике для изготовления всевозможных токопроводящих деталей.

  • Алюминий

Алюминий является вторым по значению (после меди) проводниковым материалом. Это важнейший представитель так называемых легких металлов (т. е. металлов с плотностью менее 5 Мг/м3 ); плотность литого алюминия около 2,6, а прокатанного —2,7 Мг/м3 . Таким образом, алюминий приблизительно в 3,5 раза легче меди. Температурный коэффициент расширения, удельная теплоемкость и теплота плавления алюминия больше, чем меди. Вследствие высоких значений удельной теплоемкости и теплоты плавления для нагрева алюминия до температуры плавления и перевода в расплавленное состояние требуется большая затрата теплоты, чем для нагрева и расплавления такого же количества меди, хотя температура плавления алюминия ниже, чем меди.

Алюминий обладает пониженными по сравнению с медью свойствами — как механическими, так и электрическими. При одинаковых сечении и длине электрическое сопротивление алюминиевого провода больше, чем медного, в 0,028 : 0,0172 = 1,63 раза. Следовательно, чтобы получить алюминиевый провод такого же электрического сопротивления, как и медный, нужно взять его сечение в 1,63 раза большим, т. е. диаметр должен быть в » 1,3 раза больше диаметра медного провода. Отсюда понятно, что если ограничены габариты, то замена меди алюминием затруднена. Если же сравнить по массе два отрезка алюминиевого и медного проводов одной длины и одного и того же сопротивления, то окажется, что алюминиевый провод хотя и толще медного, но легче его приблизительно в два раза:8,9/(2,7×1,63) »2.

Поэтому для изготовления проводов одной и той же проводимости при данной длине алюминий выгоднее меди в том случае, если тонна алюминия дороже тонны меди не более чем в два раза. Весьма важно, что алюминий менее дефицитен, чем медь.

Для электротехнических целей используют алюминий, содержащий не более 0,5 % примесей, марки А1. Еще более чистый алюминий марки АВОО (не более 0,03 % примесей) применяют для изготовления алюминиевой фольги, электродов и корпусов оксидных конденсаторов. Алюминий наивысшей чистоты АВОООО имеет содержание примесей, не превышающее 0,004 %. Разные примеси в различной степени снижают удельную проводимость g алюминия. Добавки Ni, Si, Zn или Fe при содержании их 0,5 % снижают y отожженного алюминия не более чем на 2—3 %. Более заметное действие оказывают примеси Сu, Ag и Mg, при том же массовом содержании снижающие v алюминия на 5—10 %. Очень сильно снижают g алюминия добавки Ti и Мп.

Прокатка, протяжка и отжиг алюминия аналогичны соответствующим операциям над медью. Из алюминия может прокатываться тонкая (до 6—7 мкм) фольга, применяемая в качестве электродов бумажных и пленочных конденсаторов.

Алюминий весьма активно окисляется и покрывается тонкой оксидной пленкой с большим электрическим сопротивлением. Эта пленка предохраняет алюминий от дальнейшей коррозии, но создает большое переходное сопротивление в местах контакта алюминиевых проводов и делает невозможной пайку алюминия обычными методами. Для пайки алюминия применяются специальные пасты-припои или используются ультразвуковые паяльники. В местах контакта алюминия и меди возможна гальваническая коррозия. Если область контакта подвергается действию влаги, то возникает местная гальваническая пара с довольно высоким значением ЭДС, причем полярность этой пары такова, что на внешней поверхности контакта ток идет от алюминия к меди и алюминиевый проводник может быть сильно разрушен коррозией. Поэтому места соединения медных проводников с алюминиевыми должны тщательно защищаться от увлажнения (покрытием лаками и тому подобными способами).

Алюминиевые сплавы обладают повышенной механической прочностью. Примером такого сплава является альдрей содержащий 0,3-0,5 % Mg, 0,4-0,7 % Si и 0,2-0,3 % Fe (остальное Аl). Высокие механические свойства альдрей приобретает после особой обработки (закалки катанки—охлаждение в воде при температуре 510—550°С волочение и последующая выдержка при температуре около 150 °С). В альдрее образуется соединение Mg2 Si, которое сообщает высокие механические свойства сплаву; при указанной выше тепловой обработке достигается выделение MgoSi из твердого раствора и перевод его в тонкодисперсное состояние.

 

4.Сплавы высокого сопротивления

 

Сплавы высокого сопротивления при нормальной температуре имеют с не менее 0,3 мкОмЧм. При использовании этих сплавов для электроизмерительных приборов и образцовых резисторов, помимо высокого удельного сопротивления требуются также высокая стабильность значения с во времени, малый температурный коэффициент удельного сопротивления ТКс и малый коэффициент термо-ЭДС в паре сплава с медью. Сплавы для электронагревательных элементов должны длительно работать на воздухе при высоких температурах (иногда до 1000°С и даже выше). Кроме того, для многих случаев применения требуется технологичность сплавов – возможность изготовления из них тонкой гибкой проволоки.

Манганин, названный так из-за наличия в нем марганца (латинское manganum), – широко применяемый для изготовления образцовых резисторов и других элементов сплав. Его примерный состав: Cu – 85%, Mn – 12%, Ni – 3%. Желтоватый цвет объясняется большим содержанием меди. Значение с манганина 0,42-0,48 мкОмЧм; ТКс весьма мал – порядка (6-50)Ч106 К-1; коэффициент термо-ЭДС в паре с медью всего лишь 1-2 мкВ/К. Манганин может вытягиваться в тонкую (диаметром до 0,02 мм) проволоку; часто манганиновая проволока выпускается с эмалевой изоляцией. Для обеспечения малого значения ТКс и стабильности с манганиновую проволоку подвергают специальной термообработке (отжиг в вакууме при температуре порядка 550-600°С в течение 1-2 часов с последующим медленным охлаждением; намотанные катушки иногда дополнительно отжигаются при 200°С). Кроме того, требуется ещё длительное (до 1 года) выдерживание манганина при комнатной температуре.

Предельная длительно допустимая рабочая температура сплавов типа манганина не более 200°С.

Манганин (NiMn 3-12) является наиболее известным сплавом для прецизионных резисторов. Манганин применяют для изготовления датчиков, которыми измеряют высокие гидростатические давления.

Сопротивление манганиновой проволоки линейно возрастает с повышением давления от 0 до 1 ГПа; увеличение сопротивления при 1 ГПа – около 2,5% от исходного сопротивления при отсутствии давления.

Константан – сплав, содержащий около 60% меди и 40% никеля, что соответствует минимуму ТКс при довольно высоком значении с в системе Cu–Ni. Название «константан» объясняется значительным постоянством с при изменении температуры, т.е. малостью ТКс. Для константана при нормальной температуре с составляет 0,48-0,52 мкОмЧм.

Нагревостойкость константана выше, чем манганина: константан можно применять для изготовления реостатов и электронагревательных элементов, длительно работающих при температуре 450°С. Существенным отличием от манганина является высокая термо-ЭДС константана в паре с медью, а также с железом; его коэффициент термо-ЭДС в паре с медью составляет 44-55 мкВ/К. Это является недостатком при использовании константановых резисторов в измерительных схемах, так как при наличии разности температур в местах контакта константановых проводников с медными возникают паразитные термо-ЭДС, которые могут явиться источником ошибок, особенно при нулевых измерениях в мостовых и потенциометрических схемах. Однако константан с успехом может быть применен при изготовлении термопар, служащих для измерения температуры, если последняя не превышает 700°С. Эта термопара успешно применяется и при низких температурах вплоть до точки кипения водорода.

Широкому применению константана препятствует большое содержание в его составе дорогого и дефицитного никеля.

Сплавы высокого сопротивления на основе железа применяют в основном для электронагревательных элементов. Высокая нагревостойкость таких элементов объясняется введением в их состав достаточно больших количеств металлов, образующих при нагреве на воздухе практически сплошную оксидную пленку. Такими металлами являются в основном никель, хром и алюминий. Железо, как уже отмечалось, при нагреве легко окисляется; чем больше содержание железа в сплаве, например, с Ni и Cr, тем менее нагревостоек («жаростоек») этот сплав.

Сплавы системы Fe-Ni-Cr называют нихромами или (при повышенном содержании Fe) ферронихромами, сплавы системы Fe-Cr-Al – февралями и хромалями.

По принятым стандартам различные сплавы имеют условные обозначения, составляемые из букв и чисел. Буквы обозначают наиболее характерные элементы состава сплава, причем буква, входящая в название элемента, не всегда является первой буквой этого названия (например, Б означает ниобий, В – вольфрам, Г – марганец, Д – медь, К – кобальт, Л – бериллий, Н – никель, Т – титан, X – хром, Ю – алюминий и т.п.), число после соответствует приблизительному содержанию данного компонента в сплаве (в массовых процентах); дополнительные цифры в начале обозначения определяют повышенное (цифра 0) или пониженное количество сплава. Так, например, обозначение 0Х25Ю5 соответствует сплаву особо высокой жаростойкости с содержанием хрома около 25% и алюминия – около 5%.

Помимо скорости окисления того или иного чистого металла или компонента сплава, большое влияние на срок жизни нагревательного элемента, работающего на воздухе, оказывают свойства образующегося оксида. Если оксид летуч, то он не может защитить оставшийся металл от дальнейшего окисления. Легко улетучиваются, например, оксиды вольфрама и молибдена, поэтому такие металлы не могут работать в накаленном состоянии при доступе кислорода. Если же оксид не летуч, то он при окислении образует слой на поверхности металла.

Существенным являются близкие значения ТКс самих сплавов и их оксидных пленок. Этим объясняется стойкость хромоникелевых сплавов при высокой температуре на воздухе. Растрескивание оксидных пленок имеет место в основном при резких сменах температуры; тогда при последующих нагревах кислород воздуха проникает в образовавшиеся трещины и производит дальнейшее окисление сплава. Так, при многократном кратковременном включении электронагревательного элемента из нихрома он может перегореть значительно скорее, чем в случае непрерывной работы элемента при той же температуре.

На срок жизни элементов из нихрома и других жаростойких сплавов влияет также наличие колебаний значений сечения проволоки по ее длине; в местах с уменьшенным сечением элементы перегреваются и легче перегорают.

Информация о работе Проводниковые материалы