Автор работы: Пользователь скрыл имя, 23 Апреля 2012 в 23:15, реферат
При работе с хлором, хлористым водородом, соляной кислотой и едким натром необходимо строго соблюдать правила техники без-опасности : вдыхание хлора вызывает резкий кашель и удушье, вос-паление слизистых оболочек дыхательных путей, отек легких, а в дальнейшем образование в легких воспалительных очагов.
Хлористый водород даже при незначительном содержании его в воздухе вызывает раздражение в носу и гортани, покалывание в груди, хрипоту и удушье. При хроническом отравлении малыми его концентрациями особенно страдают зубы, эмаль которых быстро разрушается.
Отравления соляной кислотой весьма сходны с отравлениями хлором.
Введение……………………………………………………………………......3
1. Сырье для производства……………………………………………………4
2. Технологические аспекты производства…………………………………..5
2.1 Физико-химические основы процесса………………………………....5
2.2 Технология производства……………………………………………….14
2.3 Материальный баланс…………………………………………………...20
3. Охрана окружающей среды…………………………………………………22
4. Применение…………………………………………………………………..24
5. Основные производители……………………………………………………26
Список использованной литературы……………………………………
Цех известковой каустической соды, выпускающий твердый едкий натр, имеет три отделения: каустификации, выпарки слабых щелоков и плавки.
Отделение каустификации. На рис.1, приведена технологическая схема отделения двухступенчатой каустификации. Основной особенностью этой схемы является одновременное проведение реакций кипения навести и каустификации содового раствора в одном аппарате — гасителе-каустификаторе, в котором степень каустификации достигает 75—80%. На гашение извести в гаситель подают не воду, как обычно, а содовый раствор. Для уменьшения потерь извести в технологической схеме предусматривается дополнительная каустификация образовавшегося в гасителе-каустификаторе шлама, содержащего непрореагировавший СаО.
Отделение выпарки. Концентрирование полученных слабых щелоков проводят обычно в две стадии. Первая стадия выпарки осуществляется в типовой прямоточной трехкорпусной вакуум-выпарной установке.
Выпаривание щелоков проводят с помощью водяного пара с различными параметрами. Так, в приводимой ниже схеме подогреватель и первый по ходу раствора выпарной аппарат обогревают насыщенным водяным паром давлением 980 кПа (10 кгс/см ). Концентрация едкого натра в аппарате возрастает от 130 до 200 г/л. Такой раствор переходит во второй корпус, а из второго в третий, работающий под вакуумом около 80 кПа (600 мм. рт. ст.). Обогрев второго и третьего корпусов осуществляется вторичным паром предыдущего корпуса. Концентрация NаОН на выходе из третьего корпуса составляет 610—660 г/л.
Выделяющиеся при
По другой технологической схеме осадок после вакуум-фильтра репульпируют, вновь отфильтровывают, но на центрифуге, а затем подают в растворитель солен выпарки.
Осветленный раствор в сборнике средних щелоков представляет собой товарный продукт. При выпуске твердого NаОН жидкая каустическая сода поступает на вторую стадию выпарки, где ее концентрация возрастает до 1000—1200 г/л NаОН. На второй стадии выпарки имеется один вакуум-выпарной аппарат, обогреваемый обычно вторичным паром первого корпуса первой стадии выпарки.
В этом корпусе поддерживается вакуум около 80 кПа (600 мм рт. ст.). По мере повышения концентрации NаОН из раствора выделяются дополнительные количества соды. Поэтому раствор после четвертого выпарного аппарата поступает в отстойник «крепких» щелоков. Дальнейшее движение «крепких» щелоков и шлама аналогично приведенному выше для средних щелоков.
На некоторых заводах выпаривание щелока ведут паром под давлением 200—300 кПа (2—3 кгс/см2) при соответствующем изменении движения пара и щелока.
Для выпуска твердого плавленого и чешуированного едкого натра «крепкий щелок», содержащий 1000—1200 г/л NаОН, подвергается дальнейшему обезвоживанию (плавке).
Отделение плавки каустической соды. Плавка едкого натра может осуществляться в одиночных котлах (периодический процесс); в настоящее время этот процесс практически не применяется. Значительно более эффективным способом обезвоживания является непрерывная плавка NаОН в батарее плавильных котлов.
На рис.2 приведена технологическая схема непрерывной плавки едкого натра в батарее плавильных котлов.
Рис.2. Схема непрерывного обезвоживания и плавки каустической соды в батарее плавильных котлов: 1-6 — подогреватели щелока; 7 — топки; 8 — подогреватели вохдуха; I– IX — плавильные котлы.
Электролизные методы. Когда концентрированный раствор хлорида натрия подвергается электролизу, образуются хлор и гидроксид натрия, но они реагируют друг с другом с образованием гипохлорита натрия – отбеливающего вещества. Этот продукт, в свою очередь, особенно в кислых растворах при повышенных температурах, окисляется в электролизной камере до перхлората натрия. Чтобы избежать этих нежелательных реакций, электролизный хлор должен быть пространственно отделен от гидроксида натрия.
В большинстве промышленных установок, используемых для получения электролизной каустической соды, это осуществляется с помощью диафрагмы, помещенной вблизи анода, на котором образуется хлор. Существуют установки двух типов: с погруженной или непогруженной диафрагмой. Камера установки с погруженной диафрагмой целиком заполняется электролитом. Соляной раствор втекает в анодное отделение, где из него выделяется хлор, а раствор каустической соды заполняет катодное отделение. В установке с непогруженной диафрагмой раствор каустической соды отводится из катодного отделения по мере образования, так что камера оказывается пустой. В некоторых установках с непогруженной диафрагмой в пустое катодное отделение напускается водяной пар, чтобы облегчить удаление каустической соды и поднять температуру.
В диафрагменных установках получается раствор, содержащий как каустическую соду, так и соль. Большая часть соли выкристаллизовывается, когда концентрация каустической соды в растворе доводится до стандартного значения 50%. Такой «стандартный» электролизный раствор содержит 1% хлорида натрия. Продукт электролиза пригоден для многих применений, например для производства мыла и чистящих препаратов. Однако для производства искусственного волокна и пленки требуется каустическая сода высокой степени очистки, содержащая менее 1% хлорида натрия (соли). «Стандартный» жидкий каустик можно надлежащим образом очистить методами кристаллизации и осаждения.
Непрерывное разделение хлора и каустика можно также осуществить в установке с ртутным катодом. Металлический натрий образует с ртутью амальгаму, которая отводится во вторую камеру, где натрий выделяется и реагирует с водой, образуя каустик и водород. Хотя концентрация и чистота соляного раствора для установки с ртутным катодом более важны, чем для установки с диафрагмой, в первой получается каустическая сода, пригодная для производства искусственного волокна. Ее концентрация в растворе составляет 50–70%. Более высокие затраты на установку с ртутным катодом оправдываются получаемой выгодой.
2.3 Материальный баланс
Материальный баланс любого технологического процесса или части его
составляется на основании закона сохранения веса (массы) вещества:
ΣGисх = ΣGкон
где ΣGисх – сумма весов (масс) исходных продуктов процесса;
ΣGкон –сумма весов (масс) конечных продуктов процесса в тех же единицах измерения.
Таким образом, если в какой-
поступает GА кг продукта А, GВ кг продукта В и т.д., а в результате переработки их получается GС кг продукта С, GД кг продукта Д и т.д., а также если в конечных продуктах остается часть начальных продуктов А (GА кг), В (GВ кг) и т.д., то при этом должно сохраниться равенство
GА + GВ +….= GА' + GВ' + GС + GД +….+ΔG,
где ΔG –производственные потери продукта.
Определение массы вводимых компонентов и полученных продуктов
производится отдельно для твердой, жидкой и газообразных фаз согласно
уравнению
Gг + Gж + Gт.= Gг' + Gж' + Gт’
При составлении полного баланса обычно решают систему уравнений
с несколькими неизвестными. При этом могут быть использованы
соответствующие формулы для определения равновесного и фактического
выхода продукта, скорости процесса и т. д.
Теоретический материальный баланс рассчитывается на основе стехиометрического уравнения реакции и молекулярной массы компонентов.
Практический материальный баланс учитывает состав исходного сырья и готовой продукции, избыток одного из компонентов сырья, степень превращения, потери сырья и готового продукта и т. п.
Из данных материального баланса можно найти расход сырья и вспомогательных материалов на заданную мощность аппарата, цеха, себестоимость продукта, выходы продукта, объем реакционной зоны, число
реакторов, производственные потери.
На основе материального баланса составляют тепловой баланс, позволяющий определить потребность в топливе, величину теплообменных
поверхностей, расход теплоты или хладоагентов.
Результаты этих подсчетов обычно сводят в таблицу материального баланса.
Типовая таблица материального баланса
Приход
Статья прихода Количество,кг Cтатья расхода Количество,кг
Продукт А Ga Продукт А Ga
Продукт В Gb (остаток)
Продукт В Gb
(остаток)
Продукт С Gc
Продукт Д Gd