Автор работы: Пользователь скрыл имя, 29 Марта 2016 в 01:33, курсовая работа
Поверхностно-активные вещества – это химические соединения, способные накапливаться на поверхности соприкосновения двух тел или двух термодинамических фаз (называемых поверхностью раздела фаз), и вызывающие снижение поверхностного натяжения веществ, образующих эти фазы. На межфазной поверхности Поверхностно-активные вещества образуют слой повышенной концентрации — адсорбционный слой.
Строго говоря, очень многие вещества при соответствующих условиях могут проявить поверхностную активность, т. е. адсорбироваться под действием межмолекулярных сил на той или иной поверхности, понижая её свободную энергию.
Авторы полагают, что электростатическое связывание дифильных ионов детергента с полиэлектролитной цепью сопровождается существенной гидрофобизацией макромолекул. Показано, что величина гидрофобности (m), рассчитанная с учетом электростатического связывания ПАВ полиэлектролитом, симбатно возрастает с увеличением степени электростатического воздействия (θ).
О конформационных превращениях макромолекул полиэлектролитов при их взаимодействии с ПАВ авторы работ судили по изменению их приведенной вязкости и мутности. Показано, что введение в раствор синтетического полиэлектролита противоположно заряженных ПАВ приводит к заметному понижению приведенной вязкости и возрастанию мутности.
А.В. Билалов с сотрудниками сообщили в работе о новом эффекте, заключающемся в скачкообразном увеличении активности ионов ПАВ и уменьшении активности противоионов полиэлектролита. При достижении определенного значения концентрации ПАВ в растворе в области насыщения объема макроиона молекулами ПАВ происходит «выброс» значительной части ионов ПАВ из комплекса и их обратное замещение неорганическими противоионами.
ПАВ и полимеры в их смешанных водных растворах могут образовывать ассоциаты (комплексы), стабилизированные электростатическими, ион-дипольными, гидрофобными и водородными связями. Противоположно заряженные ПАВ и полиэлектролиты образуют слабодиссоцирующие соли – электростатические стабилизированные комплексы уже при весьма низких по сравнению с ККМ концентрациях ПАВ.
В работах исследована реакция комплексообразования синтетических полимерных амфолитов на примере статического сополимера 1,2,5 – триметил-4винилэтинил пиперидола-4 и акриловой кислоты (ПА1) и регулярного сополимера стирола и N,N-диметиламинопропил моноамида малеиновой кислоты (ПА2) с анионным ПАВ (ДДС) и катионным ПАВ (цетилтриметиламмоний бромид (ЦТАБ)) в воде и водно-спиртовых растворах. Аналогично взаимодействию индивидуальных поликислот и полиоснований с ПАВ катионный детергент реагирует с кислотными группами ПА1 и ПА2 с выделением гидроксильных ионов. Установлено, что связывание как анионного, так и катионного ПАВ полиамфолита (ПА1) осуществляется за счет электростатических взаимодействий, а компактная структура поликомплекса стабилизируется гидрофобными взаимодействиями длинных алкильных частей ПАВ и удерживается в растворе незакомплексоваными частями сополимера. Отмечено, что поведение ПА2, содержащего гидрофобные стирольные участки, отличаются от поведения ПА1 в присутствии ПАВ: добавление даже незначительного количества ЦТАБ вызывает падение вязкости ПА2 вплоть до образования нерастворимого осадка, что вызвано сильной гидрофобизацией макромолекул, приводящей к формированию глобулярных частиц.
Путем изменения состояния ионизации кислотных и основных групп ПА можно регулировать глубину превращения реакции и в широких пределах варьировать состав, структуру и свойства полиэлектролитных комплексов. Работа посвящена исследованию образования полиамфолитов статического и регулярного строения с ПАВ. В этих работах основное внимание уделено фактам образования комплексов ПА-ПАВ. Высвобождение ионов ПАВ, красителей и ионов металлов при приближении к ИЭТ объясняется большой кооперативностью реакции комплексообразования между противоположно заряженными функциональными группами самого ПА. По мнению авторов макромолекулы ПА в ИЭТ образуют единую кооперативную систему, напоминающую структуру частиц НПЭК. Связывание ионов ПАВ при удалении от ИЭТ можно рассматривать как процесс разрушения единой кооперативной системы с последующим взаимодействием ПА с ионами ПАВ.
При исследовании взаимодействия синтетических ПА и полибетаинов с СПЭ и ПАВ в водных растворах показано, что образование комплекса в этих системах контролируется соотношением внутримолекулярного и интерполимерного солеобразования между противоположно заряженными функциональными группами и возникающими при этом дефектами структур в виде «петель» и «хвостов».
Установлено, что в системе МПВ-ПАВ электростатическое взаимодействие полиамфолита с ПАВ, стабилизированное гидрофобными взаимодействиями сопровождается изменением гидродинамических размеров молекул. Установлено увеличение гидродинамического размера полиамфолита, находящегося в ИЭТ, при его взаимодействии с ПАВ в результате изменения баланса свободной электростатической энергии. Натриевая соль полиамфолита показывает высокую комплексообразующую способность с ЦТАБ. Обнаружено возрастание солюбилизирующей способности водного раствора слабоионизированного полиамфолита при его взаимодействии с ПАВ, причем эффективность солюбилизации малорастворимого красителя возрастает с увеличением степени ассоциации полиамфолита с ПАВ.
Комплексообразование синтетических полиэлектролитов (ПАК, ПМАК, ПЭИ) с мицеллами ПАВ проведены в работе, где установлено, что степень электростатического связывания мицелл ПАВ с СПЭ гораздо больше, чем при взаимодействии СПЭ с ПАВ в молекулярном состоянии.
Таким образом, из вышеприведенных литературных данных следует, что взаимодействие амфотерных полиэлектролитов с противоположно заряженными ПАВ имеет свои особенности и сопровождается сильной компактизацией частиц поликомплекса за счет электростатического связывания ионогенных ПАВ полиамфолитами. Напротив, гидрофобное связывание молекул ПАВ приводит к разворачиванию макромолекулярных клубков. Степень проявления этих эффектов зависит от степени дифильности макромолекул, природы ПАВ, а также от степени ионизации функциональных групп полиамфолитов.
3.3 Ассоциаты поверхностно-активных веществ с гидрогелями
На сегодняшний день можно выделить ряд основных закономерностей, характеризующих особенности процессов, протекающих при ассоциации линейных макромолекул с ПАВ вне зависимости от их природы:
Для выраженного проявления этих особенностей необходимо помимо заряженных функциональных групп наличие развитых гидрофобных участков вдоль полимерных цепей. Это позволило выделить полимеры с низкими значениями гидрофильно-липофильного баланса в разряд «самоорганизующихся», так как они имеют тенденцию к самоорганизации, в результате чего происходит гелеобразование при определенных условиях за счет агрегации гидрофобных доменов. Присутствие в таких системах ПАВ усиливает тенденцию к «самоорганизации» за счет ассоциации гидрофобных участков как самого полимера, так и ПАВ.
Для выяснения механизма взаимодействия между редкосшитыми сетками и ионогенными ПАВ следует принять во внимание ряд важных факторов. Во-первых, оба объекта системы характеризуются индивидуальными специфическими свойствами, именно, способностью структурироваться в растворе по достижении критической концентрации мицеллообразования (ККМ) для ПАВ, а также изменением внутренней микроструктуры индивидуального гидрогеля в процессе набухания благодаря конформационной мобильности полимерных цепей между узлами сшивания. Во-вторых, учет межфазной поверхности на поверхности гидрогеля, формируемой при набухании, что в значительной степени определяет специфику проникновения ионогенных низко и высокомолекулярных веществ в объем сетки, а следовательно, ее избирательность по отношению к взаимодействующему «партнеру». Было отмечено, что при описании процессов массопереноса через межфазные границы, в том числе переноса ионов необходимо учитывать два существенных фактора: структурные неоднородности области сопряженных фаз (динамические характеристики атомных групп и фрагментов полимерных цепей в этой области с характерным размером ~1нм могут заметно отличаться от объемных значений) и наличие в области межфазных границ сильных электрических полей, создаваемых различными заряженными и полярными группами (в том числе адсорбированными атомами и молекулами, образующими донорно-акцепторные комплексы, разного рода кластерами и субстанциями другой фазы). С этой точки зрения реакционную зону взаимодействия между гидрогелями и молекулами (ионами) ПАВ условно можно разделить на две области: поверхностную (1) и диффузно-дрейфовую (2), где происходит модификация или формирование новой структуры благодаря комплексообразованию в объеме сетки.
Рассмотрены три режима взаимодействия сеток с ионами ПАВ в зависимости от концентрации последнего (с0). Первый режим соответствует концентрации ПАВ с0<c*, при которой ионы дифильных молекул могут проникать в объем сетки с незначительным уменьшением размера геля. По достижении с** (второй режим) в объеме геля начинают формироваться мицеллы, что приводит к постепенному или резкому снижению (коллапсу) степени набухания геля (α). Необходимо отметить, что характер изменения α и концентрация с**, соответствующая мицеллообразованию, зависят от степени заряженности сетки. Третий режим соответствует полной нейтрализации заряда сетки ионами ПАВ. Существенно, что при с0=с** (с**>c*>cККМ) концентрации свободных ионов внутри сетки и вне ее выравниваются и остаются постоянными. Полное отсутствие распирающего давления газа противоионов и установление мембранного равновесия между сеткой и внешним раствором не приводит к дальнейшему изменению размера сетки, который становится сравним с размером нейтральной сетки.
Выявлены существенные различия между механизмом взаимодействия нейтральных и заряженных сеток и ионогенными ПАВ, обусловленные их топологической структурой. Известно, что неионогенные гели характеризуются сильной гетерогенностью по сравнению с ионными аналогами, гомогенность которых обуславливается высокой степенью гидрофильности и способностью к нейтрализации ионогенных функциональных групп. Проникновение ионных ПАВ в объем неионного гидрогеля способствует, во-первых, приобретению заряда сеткой за счет гидрофобных взаимодействий между углеводородными радикалами дифильной молекулы и гидрофобными участками сетки, то есть идет процесс формирования новой микроструктуры, обеспечивающей увеличение объема сетки, создавая тем самым объемную «полость», размер которой должен быть достаточным для размещения в ней первичных сферических мицелл. В связи с этим более точное определение начала взаимодействия между ПАВ и сеткой соответствует критической концентрации ассоциации (ККА), величина которой ниже, чем ККМ. Во-вторых, амплитуда коллапса будет определяться как концентрацией заряда, так и длиной алкильного радикала дифильных ионов, следовательно, гидрофильно-липофильным балансом системы. Следует полагать, что морфология мицелл, формируемых в неионных гидрогелях является существенно деформированной по сравнению с мицеллами, образующимися в заряженных сетках.
Теоретически исследовано влияние
низкомолекулярного ПАВ на переход золь→гель
гидрофобно модифицированных водорастворимых
ассоциирующихся полимеров. В основу описания
процесса гелеобразования положена теория
термообратимого гелеобразования с мультиплетным
сшиванием. Показано существование нижнего
и верхнего пределов агрегации гидрофобных
доменов при формировании сетки, ведущее
к немонотонной желатинизации полимера
в зависимости от концентрации детергента.
Найдена критическая концентрация ПАВ,
при которой наиболее выражен процесс
гелеобразования, а вязкость и модуль
сдвига системы достигают максимального
значения. Такие системы, как правило,
обладают термочувствительными свойствами.
Добавление молекул ПАВ снижает растворимость
полимера в воде, расширяя тем самым область
фазового разделения со смещением НКТР
в сторону малых температур. Усиление
термочувствительных характеристик недавно
обнаружено для смеси этил(гидроксиэтил)целлюлоза-
В работе показано, что ионные ПАВ оказывают сильное влияние на НКТР полимера - гидролизованного изопропилакриламида (ГИПААm), причем амплитуда ее изменения находится в сильной зависимости от длины углеводородного радикала детергента и его концентрации. Однако неионные ПАВ не вызывают существенных изменений гидродинамических размеров полимеров, причину чего авторы объясняют отсутствием электростатических взаимодействий между полярными группами дифильных молекул.
Методом люминесцентного зонда исследовано взаимодействие редкосшитого геля полиакрилата натрия с цетилпиридинийбромидом. Показано, что диффузия катионного детергента в анионный гель приводит к существенному изменению характера микроокружения зонда, уменьшению полярности среды, резкому увеличению вероятности эксимерообразования. Совокупность полученных данных указывает на то, что ионы детергента в геле находятся в мицеллярном состоянии. Взаимодействие полианионных и поликатионных гидрогелей с противоположно заряженными ПАВ рассмотрено в. Показано, что ПАВ эффективно абсорбируются гелями и образуют внутри себя гидрофобные «самоорганизующиеся» структуры. Одновременно происходит слияние гелей. Методом малоуглового рассеяния рентгеновских лучей обнаружена высокая степень пространственного порядка гидрофобных агрегатов ПАВ в объеме геля.
При взаимодействии анионных сеток с катионными ПАВ (цетилпиридинийбромидом, алкилпиридинийхлоидом и алкилтриметил-бромидом) в случае недостатка ПАВ отмечено неоднородное распределение ПАВ как в объеме геля, так и между частями геля, находящимся в одном и том же объеме. Авторы объясняют это проигрышем в конформационной энтропии сетки в результате резкого одновременного сжатия всего образца.
В зависимости от природы ПАВ и гидрогеля на основе гидрофобно - модифицированной полиакриловой кислоты (ПАК) было изучено взаимодействие между ними в четырех комбинациях: незаряженная сетка/анионное ПАВ (1), сетка/катионное ПАВ (2); анионный гель/катионное ПАВ (3), а также анионный гель/анионное ПАВ (4). Показано, что гели адсорбируют катионное ПАВ посредством ионннообменной реакции с контрионами сетки, тогда как взаимодействие с анионными дифильными молекулами осуществляется преимущественно за счет гидрофобных взаимодействий. Согласно условию электронейтральности системы, в последнем случае анионные ПАВ проникают в объем геля вместе с собственными контрионами, что приводит к увеличению осмотической составляющей свободной энергии сетки, результатом чего является ее набухание. В случае одноименно заряженных пар заметное взаимодействие наблюдается для ПАК с развитыми гидрофобными боковыми ответвлениями, когда энергия гидрофобных взаимодействий превышает таковую электростатического отталкивания.