Автор работы: Пользователь скрыл имя, 05 Ноября 2010 в 09:49, Не определен
Реферат
Оглавление
Флавоноидами называется группа фенольных соединений с двумя ароматическими кольцами, объединенных общим структурным составом С6-С3-С6. Первое бензольное кольцо, конденсированное в большинстве классов с кислородосодержащим гетероциклом С или непосредственно прилежащее к карбонильной группе пропанового фрагмента, как в халконах, обозначают буквой А, а боковой фенильный заместитель - буквой В латинского алфавита. Исходя из такого обозначения, порядок нумерации в гетероциклических флавоноидах начинается с гетероатома с переходом на кольцо А, а в кольце В порядок нумерации автономный и начинается с углерода, связанного с остальной частью молекулы [3].
Большинство флавоноидов можно рассматривать как производные хромона (бензо-γ-пирон) [6].
Под термином флавоноиды (от лат. flavus - желтый, так как первые выделенные из растений флавоноиды имели желтую окраску, позднее установлено, что многие из них бесцветны) объединены различные соединения, генетически связанные друг с другом, но обладающие различным фармакологическим действием [7].
Изучение флавоноидов относится к началу XIX в., когда в 1814 г. Шевроле выделил из коры особого вида дуба кристаллическое вещество, названное кверцетрином. Спустя 40 лет Риганд установил гликозидный характер этого вещества и агликон назвал кверцетином. В 1842 г. Вайс сообщил о выделении рутина из Ruta graveolens. Впервые в 1864 г. в индивидуальном виде был получен хризин из тополя; строение его было подтверждено в 1898 г. Косанецким путем синтеза метилового эфира хорацетофенона с этиловым эфиром бензойной кислоты [5]. В 1903 г. Валяшко установил строение рутина. Систематическое изучение строения природных флавоноидов многие годы проводили польские химики. Большую работу по изучению антоцианов провел Вильштеттер. Исследованиями катехинов занимались А. Л. Курсанов, М. Н. Запраметов, К. Фрейденберг и др. Интерес к флавоноидным соединениям особенно возрос в 40-е годы нашего столетия: флавоноиды привлекают внимание ученых разносторонней биологической активностью и чрезвычайно низкой токсичностью. После 1970 г. выделено свыше 1400 соединений, относящихся к флавоноидам. Перспективным направлением является поиск биологически активных соединений группы ксантонов - близких по строению к флавоноидам [7].
В
зависимости от степени окисления
и гидроксилирования
I. Собственно флавоноиды (эуфлавоноиды) с боковым фенильным радикалом у С2.
II.
Изофлавоноиды с фенильным
III.
Неофлавоноиды с фенильным
IV.
Бифлавоноиды.
I.
Собственно флавоноиды
К этой подгруппе относятся:
1) производные флавана (2 фенилхромана):
2) производные флавона (2 фенилхромона):
ФЛАВОН
ФЛАВОНОН
3) флавоноиды с раскрытым пироновым кольцом:
ХАЛКОН
4)
ауроны:
II. Изофлавоноиды
с фенильным радикалом в положении 3:
ИЗОФЛАВАН
III. Неофлавоноиды с фенильным радикалом у С4
IV. Бифлавоноиды –
димерные соединения, состоящие из связанных С-С
связью флавонов, флавононов и др.
БИФЛАВОН
В растениях флавоноидные
В качестве углеводной части могут быть моно-, ди- и трисахариды. Моносахаридами являются обычные для растений сахара: D-глюкоза, D-галактоза, D-ксилоза, L-рамноза и др. В некоторых случаях встречаются специфические дисахариды: рутиноза (рамноза и глюкоза), софороза (2 молекулы глюкозы).
Сахара могут присоединяться к агликону в 3, 7, 3', 4' и др. положениях. Для флавоноидов характерно гидроксилирование. Оно возможно почти во всех положениях. У некоторых флавоноидов гидроксилы метилированы.
Все известные флавоноидные гликозиды разделяются на следующие группы [2].
Основную группу флавоноидов составляют О-гликозиды, в которых сахара cвязаны с агликоном полуацетальной связью через атом кислорода. О-гликозиды в зависимости от количества сахаров, положения и порядка присоединения делятся на моногликозиды, биозиды, дигликозиды и смешанные гликозиды.
Вторую группу составляют С-гликозиды или гликофлавоноиды, которые можно подразделить на С-моногликозиды, С-дигликозиды, С-О-дигликозиды, С-О-биозиды. В гликофлавоноидах углеводные заместители связаны с агликоном через углеродный атом в 6 или 8-м положении.
К третьей группе флавоноидных гликозидов относятся так называемые комплексные соединения.Они представляют собой ацилированные гликозиды различных групп и в зависимости от положения ацильного заместителя делятся на гликозиды депсиноидного типа и гликозиды со сложноэфирной связью в сахарных заместителях. Из кислот, выделенных из комплексных гликозидов, идентифицированы бензойная, n-оксибензойная, кофейная, уксусная, пропионовая, n-оксикоричная и другие кислоты [3].
К
флавоноидам относятся
III. Физико-химические свойства.
Флавоноиды являются кристаллическими веществами с определенной температурой плавления, без запаха, имеющие жёлтый (флавоны, флавонолы, халконы и др.), бесцветные (изофлавоны, катехины, флаваноны и др.), а также окрашенные в красный или синий цвет в зависимости от ρН среды (антоцианы) [6]. В кислой среде они имеют красный цвет (соли катионов), в щелочной – синий (соли анионов)[2].
Агликоны флавоноидов, как правило, растворимы в ацетоне, спиртах, органических растворителях и нерастворимы в воде. Гликозиды плохо растворимы в воде, за исключением гликозидов, имеющих в своей молекуле более трёх остатков сахара, не растворимы в органических растворителях (эфире и хлороформе).
Флавоноидные
гликозиды обладают оптической активностью,
для них характерна способность
к кислотному и ферментативному
гидролизу. Скорость гидролиза и
условия его проведения различны
для различных групп
О-гликозиды при действии разбавленных минеральных кислот и ферментов легко гидролизуются до агликона и углеводного остатка. С-гликозиды с трудом расщепляются под действием концентрированных кислот (HCl или СН3СООН) или их смесей при длительном нагревании [2].
Под влиянием света и щелочей легко окисляются, изомеризуются, разрушаются. При нагревании до температуры 200°С эти соединения возгоняются, а при более высокой температуре разрушаются [3].
IV. Распространение в растительном мире.
Флавоноиды широко распространены в растительном мире. Более того, многие семейства характеризуются исключительным многообразием типов флавоноидных соединений, синтезируемых в их представителях [5].
Около 40% флавоноидов приходится на группу производных флавонола, несколько меньше – флавона, значительно реже встречаются флаваноны, халконы, ауроны [6].
Особенно богаты флавоноидами высшие растения семейств:
Более часто флавоноиды встречаются в тропических и альпийских растениях. Обнаружены и у низших растений: зеленые водоросли (ряски), споровые (мхи, папоротники), хвощи (хвощ полевой), а также у некоторых насекомых (мраморно-белая бабочка) [7].
В
растениях флавоноиды локализуются
в различных органах, но чаще в
надземных: цветках, обуславливая окраску
лепестков(бессмертник
В клетках растений флавоноиды накапливаются в форме гликозидов, главным образом в вакуолях, а в свободном состоянии - в специальных образованиях, зачастую имеющих довольно сложное строение - смоляных и эфирномасличных ходах, канальцах, вместилищах, железках и т.д. В надземных частях растений более 85% суммы флавоноидов локализуется в клетках эпидермы и только 15% - в остальных тканях [2].
В лепестках цветков обычно
находятся антоцианы,