Автор работы: Пользователь скрыл имя, 03 Апреля 2015 в 05:58, контрольная работа
В межклеточном матриксе находятся 2 типа волокнистых структур: Коллагеновые и эластиновые волокна. Основным их компонентом является нерастворимый белок коллаген.
Коллаген- сложный белок, относится к группе гликопротеинов, имеет четвертичную структуру, его молекулярная масса составляет 300 kDa. Составляет 30 % от общего количества белка в организме человека. Его фибриллярная структура - это суперспираль, состоящая из 3-х -цепей.
Сущность этого патологического процесса состоит в том, что в гепатоцитах — функциональных клетках печени, накапливаются липиды (жирные кислоты), причем, преимущественно триглицериды (смесь жирных кислот и глицерина). - Доля триглицеридов в тяжелых случаях может составлять до 50% от массы печени. Гепатоциты, переполненные триглицеридами, погибают и замещаются фиброзной соединительной тканью.
Причинами развития этой патологии являются: употребление алкоголя, нарушение обмена веществ как следствие ожирения или сахарного диабета, а также регулярное употребление с продуктами питания различных консервантов, красителей, усилителей вкуса и аромата, и продуктов, содержащих большое количество жиров. Возможно развитие жирового гепатоза вследствие постоянного приема некоторых лекарственных препаратов (кортикостероидов, тетрацеклина). Иногда патологический процесс печени может возникать, как осложнение при хронических заболеваниях желудочно-кишечного тракта(холецистопанкреатит, гастроэнтерит, генетически обусловленных заболеваниях пищеварительной системы).
14. Участие печени в обмене углеводов.
Печень играет ведущую роль в поддержании физиологической концентрации глюкозы в крови. Из общего количества поступающей из кишечника глюкозы печень извлекает ее большую часть и тратит: 10-15 % от этого количества на синтез гликогена, 60 % на окислительный распад, 30 % на синтез жирных кислот.
При физиологической гипогликемии в печени активируется распад гликогена. Первая стадия этого процесса заключается в отщеплении молекулы глюкозы и ее фосфорилировании (фермент фосфорилаза). Далее Глю-5-Ф может расходоваться по трем направлениям:
1. по пути глтколиза с образованием пировиноградной кислоты и лактата;
2. по пентозофосфатному пути;
3. расщепляться под действием фосфотазы на глюкозу и фосфор.
Преобладает последний путь, который приводит к выбросу в общий кровоток свободной глюкозы.
В печени активно протекает глюконеогенез, при котором предшественниками глюкозы являются пируват и аланин (поступающий из мышц), глицерол - из жировой ткани и с пищей ряд глюкогенных АК. Избыточное поступление глюкозы с пищей увеличивает в гепатоците интенсивность всех путей ее превращения. Так активируется ее окисление с образованием большого количества пирувата. Для его дальнейшего окисления необходимо также большое количество КоА, который также используется и для окисления жирных кислот. В результате окисление жирных кислот и распад липидов в жировых депо замедляется.
15. Участие печени в обмене витаминов.
Печень участвует в обмене почти всех витаминов, главным образом в роли органа, депонирующего большинство витаминов и разрушающего часть их. Обмен витамина А находится в прямой зависимости от функции печени па всех этапах. Всасывание поступающего с пищей жирорастворимого витамина А в кишечнике становится возможным вместе с другими веществами липидной природы только благодаря эмульгирующему действию желчи. Основная масса витамина А (около 95%) накапливается печенью в мельчайших жировых капельках в цитоплазме печеночных и купферовских клеток. Печень регулирует поступление витамина А в кровь. Так же как и в кишечнике, в ткани печени происходит превращение каротина в витамин А. При поражениях паренхимы печени нарушается его всасывание из кишечника, накопление в печеночной ткани и падает концентрация витамина в плазме крови.
Обмен большинства витаминов комплекса В непосредственно связан с функцией печени. Многие из них входят в состав элементов дыхательных ферментов. Концентрация большинства витаминов этой группы в печени выше, чем в других органах. Функция окислительных дыхательных ферментов связаны, в частности, с присутствием в ткани витамина В| (тиамина), депонируемого в форме кокарбоксилазы и участвующего в декарбоксилировании и-кетокислот, витамина Вг (рибофлавина) — активного участника окислительного дезаминпроваппя амино кислот, витамина В5 (пантотеиовой кислоты), входящего в состав ацетилкозпзима А и непосредственно связи и иого, таким образом, с последними этапами никла Кребса в образовании конечных продуктов метаболизма белков, жиров, углеводов и с ацетилированием ряда токсических веществ, а также витамина В6 (пиридоксина), участвующего в качестве коэизпма в транс-ампнировании и карбоксилнровапии аминокислот, в катализе основных жирных кислот и др.
Присутствие желчи в кишечнике - необходимое условие всасывания также и других жирорастворимых витаминов I). Е, К. Участие печени в обмене витамина D изучено недостаточно. Известно, что печень является главным органом, депонирующим витамин D. и что нарушение витамина D при поражениях печени связано главным образом с длительной ахолией. Витамин Е (токоферол) депонируется, кроме печени, также и в жировой клетчатке н выделяется с желчью. Нначение печени в обмене витамина Е изучено недостаточно. Вследствие значительных .....ибирующих процессы окисления свойств токоферола недостаток его в организме ведет к повреждению паренхимы печени. Витамин К участвует в осуществляемом печенью синтезе факторов протромбпнового комплекса, и недостаточное всасывание его из кишечника при ахолии является одной из причин гипопротро.мбинемпн и геморрагического диатеза при заболеваниях печени.
16. Желчеобразующая функция печени. Состав и функции желчи. Гепатоэнтеральная циркуляция желчных кислот. Биосинтез желчных кислот и их роль.
Желчеобразование и желчевыделение – одна из сложных, интегративных метаболических функций печени. Желчь представляет собой одновременно и экскреторный, и секреторный продукт печени, в состав которого входят вещества, являющиеся одновременно и балластными, и даже токсичными для организма метаболитами, подлежащими удалению из организма, и веществами, активно участвующими в ряде физиологических процессов пищеварения в кишечнике, которые способствуют расщеплению и всасыванию пищевых веществ.
Вещества, входящие в состав желчи, частично синтезируются в печени, что требует значительных энергетических тракт (секреция). Желчь состоит из желчных кислот, холестерина, фосфолиппдов, билирубина, белков, минеральных ионов, воды. Таким образом, в желчеооразующей функции печени объединено участие печени в пигментном обмене, липидиом, белковом, минеральном обмене, клиренсе крови от излишних метаболитов, в процессах кишечного пищеварения.
Функции желчи: эмульгирование жиров, экскреторная, пищеварительная и др.
Кише́чно-печёночная циркуля́ция же́лчных кисло́т — циклическое обращение желчных кислот в пищеварительном тракте, при котором они синтезируются печенью, выводятся в составе желчи в двенадцатиперстную кишку, реабсорбируются в кишечнике, транспортируются кровотоком к печени и повторно используются при секреции желчи.
Желчные кислоты всасываются в кишечнике кровь, через воротную вену с кровью вновь попадают в печень и опять секретируются в составе желчи, поэтому 85—90% всего количества желчных кислот, содержащихся в желчи, являются желчными кислотами, уже ранее «проходившими» через кишечник. Количество оборотов желчных кислот печень—кишечник—печень у человека примерно 5-6 в сутки (до 10). Объём оборачиваемых желчных кислот — 2,8—3,5 г.
Первичные желчные кислоты (холевая и хенодезоксихолевая) синтезируются в гепатоцитах печени из холестерина. Желчные кислоты образуются в митохондриях гепатоцитов и вне их из холестерина с участием АТФ. Гидроксилирование при образовании кислот осуществляется в эндоплазматическом ретикулуме гепатоцита. Среди выделяемой в кишку желчи вновь синтезированных желчных кислот не более 10 %, остальные 90 % — это продукт кишечно-печёночной циркуляции желчных кислот из кишки в кровь и в печень.
17. Обезвреживающая функция печени. Обезвреживание продуктов гниения белков в печени: этапы, типы химических реакций. Токсическое действие продуктов гниения белков.
Гние́ние (аммонификация) — процесс разложения азотсодержащих органических соединений (белков, аминокислот), в результате их ферментативного гидролиза под действием аммонифицирующих микроорганизмов с образованием токсичных для человека конечных продуктов — аммиака, сероводорода, а также первичных и вторичных аминов при неполной минерализации продуктов разложения:
Первой стадией разложения белков является их гидролиз как микробными протеазами, так и протеазами клеток погибшего организма, высвобождаемыми из лизосом в результате смерти клеток (аутолиз). Протеолиз происходит в несколько стадий- в начале белки расщепляются до всё ещё крупных полипептидов, затем образовавшиеся полипептиды расщепляются до олигопептидов, которые в свою очередь расщепляются до дипептидов и свободных аминокислот.[1] Образовавшиеся свободные аминокислоты затем подвергаются ряду превращений, приводящих к выделению характерных для гниения продуктов. Первыми стадиями является дезаминирование аминокислот, в результате которого аминогруппа аминокислоты отщепляется и высвобождается свободный ион аммония и декарбоксилирование, в результате которого карбоксильная группа отщепляется с высвобождением двуокиси углерода (реакция декарбоксилирования чаще всего происходит в условиях пониженного pH). В результате декарбоксилирования высвобождаются также первичные амины:
Выделяют так называемое окислительное дезаминирование (наиболее распространённый вид дезаминирования, в результате которого NAD(P) восстанавливается до NAD(P)H2) и гидролитическое дезаминирование, при котором аминогруппа аминокислоты заменяется на гидроксильную.
Также некоторые аминокислоты трансаминируются путём перемещения аминогруппы аминокислоты на 2-оксикислоту (в результате этого процесса также происходит дезаминирование аминокислот, кроме этого синтезируются те аминокислоты, которые бактерии не могут синтезировать путём аминирования ионами аммония).
Образовавшиеся в результате дезаминирования и декарбоксилирования продукты могут как окисляться микроорганизмами с целью получения энергии в виде АТФ, так и участвовать в реакциях промежуточного обмена.
18. Экзогенные и эндогенные субстраты детоксикации. Реакции гидроксилирования (микросомальная система окисления) и конъюгации. Детоксикация ядовитых метаболитов и чужеродных соединений (ксенобиотиков) протекает в гепатоцитах в две стадии. Реакции первой стадии катализируются монооксигеназной системой, компоненты которой встроены в мембраны эндоплазматического ретикулума. Реакции окисления, восстановления или гидролиза являются первой стадией в системе выведения из организма гидрофобных молекул. Они превращают вещества в полярные водорастворимые метаболиты.
Основной фермент гемопротеид цитохромы Р-450. К настоящему времени выявлено множество изоформ этого фермента и отнесено, в зависимости от их свойств и выполняемых функций, к нескольким семействам. У млекопитающих идентифицировано 13 подсемейств цх Р-450, условно считается, что ферменты семейства I-IV участвуют в биотрансформации ксенобиотиков, остальные метаболизируют эндогенные соединения (стероидные гормоны, простатагландины, жирные кислоты и др.).
Важным свойством цх Р-450 является способность к индукции под действием экзогенных субстратов, что легло в основу классификации изоформ в зависимости от индуцируемости тем или веществом определенной химической структуры.
На первой стадии биотрансформации происходит образование или высвобождение гидрокси-, карбоксильных, тиоловых и аминогрупп, которые являются гидрофильными, и молекула может подвергаться дальнейшему превращению и выведению из организма. В качестве кофермента используется НАДФН. Кроме цх Р-450, в первой стадии биотрансформации принимают участие цх b5 и цитохромредуктаза.
Многие лекарственные вещества, попадая в организм, превращаются на первой стадии биотрансформации в активные формы и оказывают необходимый лечебный эффект. Но часто ряд ксенобиотиков не детоксицируется, а наоборот токсифицируется с участием монооксигеназной системы и становится более реакционноспособным.
Продукты метаболизма чужеродных веществ, образовавшихся на первой стадии биотрансформации, подвергаются дальнейшей детоксикации с помощью ряда реакций второй стадии. Образующиеся при этом соединения менее полярны и в связи с этим легко удаляются из клеток. Преобладающим является процесс конъюгации, катализируемый глутатион-S-трансферазой, сульфотрансферазой и UDP-глюкуронилтрансферазой. Конъюгацию с глутатионом, приводящую к образованию меркаптуровых кислот, принято рассматривать в качестве основного механизма детоксикации.
Глутатион (ведущий компонент редокс-буфера клетки) представляет собой соединение, содержащее реактивную тиоловую группу. Большая его часть находится в восстановленной форме (GSH) и играет центральную роль в инактивации токсических и реактивных продуктов. Восстановление окисленного глутатиона осуществляет фермент - глутатионредуктаза, используя как кофермент НАДФН. Коньюгаты с глутатионом, серной и глюкуроновой кислотами выводятся из организма преимущественно с мочой.
19. Обезвреживание этанола в печени.
Основным местом метаболической трансформации этанола является печень, в этом процессе может также принимать участие эпителий желудка. Этанол дегидрируется алкогольдегидрогеназой в этаналь (ацетальдегид), а затем альдегиддегидрогеназой переводится в ацетат. Уксусная кислота в реакции, катализируемой ацетат-КоА-лигазой (тиокиназой) в присутствии АТФ, превращается в ацетил-КоА (ацетил-СоА). Следует отметить, что весь процесс промежуточного метаболизма хорошо согласован. Наряду с цитоплазматической алкогольдегидрогеназой в метаболизме этанола принимают ограниченное участие каталаза и "индуцибельная" микросомальная алкогольоксидаза.
Скорость трансформации этанола в печени лимитируется главным образом активностью алкогольдегидрогеназы. Другим лимитирующим фактором является наличие НАД+. Максимальная скорость реакции наблюдается даже при небольших концентрациях этанола. Поэтому уровень этанола в организме понижается с постоянной скоростью (расщепление этанола — реакция нулевого порядка).
«Энергетическая ценность» этанола составляет 29,4 кДж/г (7 ккал/г). Поэтому алкогольные напитки обеспечивают организм значительной частью энергоресурсов (особенно при алкоголизме).
Хотя исследование механизма действия этанола на организм представляется крайне актуальным, этот вопрос все еще остается недостаточно изученным. Вместе с тем действие больших количеств этанола напоминает действие наркотика, что можно объяснить прямым воздействием этанола на мембраны нейронов.
20. Холестаз. Возможные причины развития. Нарушения обмена веществ при холестазе. Лабораторные мааркеры холестаза.