Основные компоненты внеклеточного матрикса соединительных тканей: коллагеновые волокна. Структура и роль

Автор работы: Пользователь скрыл имя, 03 Апреля 2015 в 05:58, контрольная работа

Описание работы

В межклеточном матриксе находятся 2 типа волокнистых структур: Коллагеновые и эластиновые волокна. Основным их компонентом является нерастворимый белок коллаген.
Коллаген- сложный белок, относится к группе гликопротеинов, имеет четвертичную структуру, его молекулярная масса составляет 300 kDa. Составляет 30 % от общего количества белка в организме человека. Его фибриллярная структура - это суперспираль, состоящая из 3-х -цепей.

Файлы: 1 файл

колок бх.doc

— 189.00 Кб (Скачать файл)

1. Основные компоненты внеклеточного матрикса соединительных тканей: коллагеновые волокна. Структура и роль.

В межклеточном матриксе находятся 2 типа волокнистых структур: Коллагеновые и эластиновые волокна. Основным их компонентом является нерастворимый белок коллаген.

Коллаген- сложный белок, относится к группе гликопротеинов, имеет четвертичную структуру, его молекулярная масса составляет 300 kDa. Составляет 30 % от общего количества белка в организме человека. Его фибриллярная структура - это суперспираль, состоящая из 3-х -цепей. Нерастворим в воде, солевых растворах, в слабых растворах кислот и щелочей. Это связано с особенностями первичной структуры коллагена. В коллагене 70 % аминокислот являются гидрофобными. Аминокислоты по длине полипептидной цепи расположены группами (триадами), сходными друг с другом по строению, состоящими из трех аминокислот. Каждая третья аминокислота в первичной структуре коллагена - это глицин (триада (или группа): (гли-X-Y)n, где X - любая аминокислота или оксипролин, Y - любая аминокислота или оксипролин или оксилизин). Эти аминокислотные группы в полипептидной цепи многократно повторяются.

Необычна и вторичная структура коллагена:шаг одного витка спирали составляют только 3 аминокислоты (даже немного меньше, чем 3), а не 3.6 аминокислоты на 1 виток, как это наблюдается у других белков. Такая плотная упаковка спирали объясняется присутствием глицина. Эта особенность определяет высшие структуры коллагена. Молекула коллагена построена из 3-х цепей и представляет собой тройную спираль. Эта тройная спираль состоит из 2-х -1-цепей и одной -2-цепи. В каждой цепи 1000 аминокислотных остатков. Цепи параллельны и имеют необычную укладку в пространстве: снаружи расположены все радикалы гидрофобных аминокислот. Известно несколько типов коллагена, различающихся генетически.

Второй вид волокон - эластические.В основе строения - белок эластин. Эластин еще более гидрофобен, чем коллаген. В нем до 90 % гидрофобных аминокислот. Много лизина, есть участки со строго определенной последовательностью расположения аминокислот. Цепи укладываются в пространстве в виде глобул. Глобула из одной полипептидной цепи называется -эластин. За счет остатков лизина происходит взаимодействие между молекулами -эластина.

В образовании этой структуры принимают участие радикалы аминокислоты лизина. Это структура десмозина. Десмозин - это структура пиридина, которая образуется при взаимодействии лизина 4-х молекул –эластина

2. Основные компоненты внеклеточного матрикса соединительных тканей: гликозаминогликаны и протеогликаны. Структура и роль этих компонентов.

Гликозаминогликаны - линейные отрицательно заряженные гетерополисахариды. РаНbше их называли мукополисахаридами, так как они обнаруживались в слизистых секретах (мукоза) и придавали этим секретам вязкие, смазочные свойства. Эти свойства обусловлены тем, что гликозаминогликаны могут связывать большие количества воды, в результате чего межклеточное вещество приобретает желеобразный характер.

Протеогликаны - высокомолекулярные соединения, состоящие из белка (5-10%) и гликозаминогликанов (90-95%). Они образуют основное вещество межклеточного матрикса соединительной ткани и могут составлять до 30% сухой массы ткани.

 Белки в протеогликанах  представлены одной полипептидной  цепью разной молекулярной массы. Полисахаридные компоненты у разных протеогликанов разные. Протеогликаны отличаются от большой группы белков, которые называют гликопротеинами. Эти белки тоже содержат олигосахаридные цепи разной длины, ковалентно присоединённые к полипептидной основе. Углеводный компонент гликопротеинов гораздо меньше по массе, чем у протеогликанов, и составляет не более 40% от общей массы. Гликопротеины выполняют в организме человека разные функции и присутствуют во всех классах белков - ферментах, гормонах, транспортных, структурных белках и др. Представители гликопротеинов - коллаген и эластин, иммуноглобулины, ангиотензиноген, трансферрин, церулоплазмин, внутренний фактор Касла, тиреотропный гормон.

 Гликозаминогликаны и  протеогликаны, являясь обязательными  компонентами межклеточного матрикса, играют важную роль в межклеточных взаимодействиях, формировании и поддержании формы клеток и органов, образовании каркаса при формировании тканей.

 Благодаря особенностям  своей структуры и физико-химическим  свойствам, протеогликаны и гликозаминогликаны могут выполнять в организме человека следующие функции:

-они являются структурными компонентами межклеточного матрикса;

-протеогликаны и гликозаминогликаны специфически взаимодействуют с коллагеном, эластином, фибронектином, ламинином и другими белками межклеточного матрикса;

-все протеогликаны и гликозаминогликаны, являясь полианионами, могут присоединять, кроме воды, большие количества катионов (Na+, K+, Са2+) и таким образом участвовать в формировании тургора различных тканей;

-протеогликаны и гликозаминогликаны играют роль молекулярного сита в межклеточном матриксе, они препятствуют распространению патогенных микроорганизмов;

-гиалуроновая кислота и протеогликаны выполняют рессорную функцию в суставных хрящах;

-гепарансульфатсодержащие протеогликаны способствуют созданию фильтрационного барьера в почках;

-кератансульфаты и дерматансульфаты обеспечивают прозрачность роговицы;

-гепарин - антикоагулянт;

-гепарансульфаты - компоненты плазматических мембран клеток, где они могут функционировать как рецепторы и участвовать в клеточной адгезии и межклеточных взаимодействиях. Они также выступают компонентами синаптических и других пузырьков.

Гиалуроновая кислота                                          1. D-глюкуроновая кислота

                                                                                     2. К-ацетил-D-глюкозамин

Хондроитин-4-сульфат (хондроитинсульфат А) 1. D-глюкуроновая кислота

                                                                                      2. К-ацетил-В-галактозамин-4- сульфат

Хондроитин-6-сульфат (хондроитинсульфат С) 1 . D-глюкуроновая кислота

                                                                                      2. М-ацетил-D-галактозамин-6-сульфат

Дерматансульфат                                            1 . L-идуроновая кислота

                                                                                      2. N-ацетил-D-галактозамин-4-сульфат

Кератансульфат                            1. D-галактоза

2. N-ацетил-В-галактозамин-6-сульфат

Гепарансульфат           1. D-глюкуронат-2-сульфат

2. К-ацетил-0-галактозамин-6-сульфат

 

3. Механизм биосинтеза коллагена. Маркеры образования костной ткани.

Синтез коллагена.

Существуют 8 этапов биосинтеза коллагена: 5 внутриклеточных и 3 внеклеточных.

1-й этап: Протекает на  рибосомах, синтезируется молекула-предшественник: препроколлаген.

2-й этап: С помощью сигнального  пептида "пре" транспорт молекулы  в канальцы эндоплазматической  сети. Здесь отщепляется "пре" - образуется "проколлаген".

3-й этап: Аминокислотные остатки лизина и пролина в составе молекулы коллагена подвергаются окислению под действием ферментов пролилгидроксилазы и лизилгидроксилазы (эти окислительные ферменты относятся к подподклассу монооксигеназ).

При недостатке витамина "С"- аскорбиновой кислоты наблюдается цинга, - заболевание, вызванное синтезом дефектного коллагена с пониженной механической прочностью, что вызывает, в частности, разрыхление сосудистой стенки и другие неблагоприятные явления.

4-й этап: Посттрасляционная  модификация- гликозилирование проколлагена под действием фермента гликозил трансферазы. Этот фермент переносит глюкозу или галактозу на гидроксильные группы оксилизина.

5-й этап: Заключительный  внутриклеточный этап- идет формирование  тройной спирали - тропоколлагена (растворимый коллаген). В составе про-последовательности - аминокислота цистеин, который образует дисульфидные связи между цепями. Идет процесс спирализации.

6-й этап: Секретируется  тропоколлаген во внеклеточную  среду, где амино- и карбоксипротеиназы отщепляют (про-)-последовательность.(N- и C-терминальные пептиды)

7-й этап: Ковалентное "сшивание" молекулы тропоколлагена по принципу "конец-в-конец" с образованием  нерастворимого коллагена. В этом процессе принимает участие фермент лизилоксидаза (флавометаллопротеин, содержит ФАД и Cu). Происходит окисление и дезаминирование радикала лизина с образованием альдегидной группы. Затем между двумя радикалами лизина возникает альдегидная связь.

Только после многократного сшивания фибрилл коллаген приобретает свою уникальную прочность, становится нерастяжимым волокном.

Лизилоксидаза является Cu-зависимым ферментом, поэтому при недостатке меди в организме происходит уменьшение прочности соединительной ткани из-за значительного повышения количества растворимого коллагена (тропоколлагена).

8-й этап:Ассоциация молекул  нерастворимого коллагена по  принципу "бок-в-бок". Ассоциация  фибрилл происходит таким образом, что каждая последующая цепочка сдвинута на 1/4 своей длины относительно предыдущей цепи.

Лабораторные маркеры синтеза коллагена: N- и C-терминальные пептиды

4. Механизм распада коллагена. Продукты распада коллагена I типа как маркеры резорбции костной ткани.

Как и любой белок, коллаген функционирует в организме определённое время. Его относят к медленно обменивающимся белкам; Т1/2 составляет недели или месяцы. Разрушение коллагеновых волокон осуществляется активными формами кислорода и/или ферментативно (гидролитически).

Нативный коллаген не гидролизуется обычными пептидгидролазами. Основной фермент его катаболизма - коллагеназа, которая расщепляет пептидные связи в определённых участках спирализованных областей коллагена.

Лаборатоные маркеры распада коллагена: гидроксипролин в моче, пиридонолин и дезоксипиридинолин (альдегидные мостики), ß-CrossLaps (C-конец с кусочком белка)

5. Костная ткань как твердая разновидность соединительной ткани, ее основные функции.

Костная ткань - это особый  вид соединительной  ткани. Костная ткань имеет  особенности  строения,  которые не встречаются в других видах соединительной ткани. В ней преобладает межклеточное вещество,  содержащее большое количество минеральных компонентов, главным образом - солей кальция.  Основные особенности кости -  твердость, упругость, механическая прочность.

В компактном веществе кости большая часть минеральных веществ представлена гидроксилапатитом и аморфным фосфатом кальция.  Кроме них встречаются карбонаты, фториды, гидроксиды и значительное количество цитрата.  Химический  состав костной ткани (в%%):  20%  - органический компонент,  70% - минеральные вещества, 10% - вода. Губчатое вещество: 35-40% - минеральных веществ, до 50% - органические соединения, содержание воды - 10%.

Особенность     минерального компонента  в том,  что  фактическое   соотношение   кальций/фосфор равно 1,5, хотя расчетное соотношение должно  быть 1,67.  Это  позволяет  кости легко связывать или отдавать ионы фосфата,  поэтому кость - это депо для минералов, особенно для кальция.

6. Ремоделирование  костной ткани. Фазы ремоделирования. Понятие о костной ремоделирующей  единице. Лабораторные маркеры резорбции и формирования костной ткани.

Ремоделирование — это сопряженные во времени процессы локальной резорбции и формирования кости в небольших блоках посредством базисной мультиклеточной единицы, функцией которой является поддержание скелетного баланса.

Ремоделирование компактного и губчатого вещества кости рассматривается с позиции функционирования базисных многоклеточных единиц (БМЕ, Basic Multicellular Unit (BMU)) или костных ремоделирующих единиц (Bone Remodeling Unit (BRU)). БМЕ формируются в локусе перестройки костной ткани и представляют собой группу из согласованно функционирующих клеток, которые называют также "преобразующими блоками" или "обособленными ремоделирующими пакетами".

Процесс ремоделирования костной ткани происходит в несколько фаз [активации, резорбции, реверсии, формирования (остеогенеза)], в каждую из которых ведущую роль выполняют те или иные клетки. Остеокласты и остеобласты вовлечены в процесс ремоделирования кости, остеоциты и покровные клетки участвуют в обменных процессах, обеспечивая питание кости и сохранение кальциевого гомеостаза.

Ремоделирование кости начинается с активации покровных клеток покоящейся зоны (рис.1) при помощи специфических цитокинов. На костном матриксе происходит разрушение протективного слоя, к оголенной поверхности мигрируют предщественники остеокластов, сливаются в многоядерную структуру - зрелый остеокласт, который деминерализует костный матрикс (резорбция, катализируемая при помощи ферментов карбоангидразы и тартрат-резистентной кислой фосфатазы) с образованием резорбционных лакун, после чего уступает место макрофагам. Макрофаги завершают разрушение органической матрицы межклеточного вещества кости и подготавливают поверхность к адгезии остеобластов (реверсия).

В последующем наступает реверсионная фаза, когда возникшие лакуны заполняются предшественниками, дифференцирующимися в остеобласты ("клетки-строители"). Начинается синтез костных протеинов, формирование органического матрикса кости, после чего минерализация, в соответствии с новыми условиями статической и динамической нагрузки на кость, завершает цикл ремоделирования. Остеобласты остаются внутри костного матрикса, превращаясь в остеоциты. Остеобласты, оставшиеся на поверхности вновь сформированной кости, дифференцируются в покровные клетки.

Лабораторные маркеры ремоделирования костной ткани: Имеются общие маркеры формирования новой костной ткани, такие как костно-специфическая щелочная фосфатаза, остеокальцин плазмы, проколлаген I, пептиды плазмы. К биохимическим маркерам резорбции кости относятся кальций в моче и гидроксипролин, пиридинолин мочи и дезоксипиридинолин, являющиеся производными поперечных волокон коллагена.

Информация о работе Основные компоненты внеклеточного матрикса соединительных тканей: коллагеновые волокна. Структура и роль