Определение эквивалентной электропроводности уксусной кислоты при бесконечном разбавлении графическим и аналитическим методом

Автор работы: Пользователь скрыл имя, 24 Февраля 2011 в 12:49, курсовая работа

Описание работы

Цель данной работы заключается в определении эквивалентной электропроводности уксусной кислоты при бесконечном разбавлении.

Содержание работы

Введение
Литературный обзор
Характеристика уксусной кислоты
Экспериментальная часть
Обсуждение результатов
Вывод
Список использованной литературы

Файлы: 1 файл

курсовая.doc

— 727.50 Кб (Скачать файл)

    I = =  Λ .                        (13)

    Приравнивая правые части уравнений (12) и (13) и  решая равенство  относительно Λ, получаем

    Λ= αF(u+ + u-)                (14)                                                                                      

    Для сильных электролитов α=1 и

                   Λ= F(u+ + u-)                  (15)

      Произведения

    Fu++     и    Fu--                  (16)

    Называются  подвижностями ионов; их размерность [λи] = См м моль -1. Например, в водном растворе при 298 К подвижности катионов К +, Ag+ и  Mg2+ равны              73,5 · 104; 61,9 · 104 и 53,0 · 104 См м2 · моль-1 и подвижности анионов С1-1SO42- и СН3СОО- - 76,3 104; 80,0 · 104 и 40,9 · 104 См м2 моль-1 соответственно.

    Вводя значения λ+ и λ- в (14) и (15), получаем для слабых электролитов:

    Λ= α(λ+ + λ-)                       (17)

    и для сильных электролитов

    Λ= λ+ + λ-                            (18)

    Для предельно разбавленного раствора α = 1, поэтому

    Λ = λ + λ                      (19)

    где λ  и λ - подвижности ионов при предельном разведении. Уравнение (19), справедливое как для сильных, так и для слабых электролитов, называется законом Кольрауша, согласно которому молярная электрическая проводимость при предельном разведении равна сумме подвижностей ионов при предельном разведении. Из уравнения (19) и (16) получаем:

    Λ = F(u + u)                    (20)

    где F – постоянная Фарадея; u и u - абсолютные скорости движения ионов при предельном разведении.

1.1.2. Эквивалентная электропроводность

    Эквивалентная электропроводность λсм2/(г-экв Ом) вычисляется из соотношения:

                                   (21)

    где с — эквивалентная концентрация, г-экв/л.

     Эквивалентная электропроводность — это электропроводность такого объема (φ см3) раствора, в котором содержится 1 г-экв растворенного вещества, причем электроды находятся на  расстоянии 1 см друг от друга. Учитывая сказанное выше относительно удельной электропроводности, можно представить себе погруженные в раствор параллельные электроды на  расстоянии 1 см., имеющие весьма большую площадь. Мы вырезаем мысленно на поверхности каждого электрода вдали от его краев площадь, равную φ-см2. Электропроводность раствора, заключенного между выделенными поверхностями таких электродов,     имеющими площадь, равную φ- см2, и есть эквивалентная электропроводность раствора. Объем раствора между этими площадями электродов равен, очевидно, φ-см3 и содержит один грамм-эквивалент соли. Величина φ, равная  1000/с см3/г-экв, называется разведением.    Между электродами, построенными указанным выше способом, при любой концентрации электролита находится 1 г-экв растворенного вещества и изменение эквивалентной электропроводности, которое обусловлено изменением концентрации, связано с изменением числа ионов, образуемых грамм-эквивалентом, т. е. с изменением степени диссоциации, и с изменением скорости движения ионов, вызываемым ионной атмосферой.

    Мольная электропроводность электролита — это произведение эквивалентной электропроводности на число грамм-эквивалентов в 1 моль диссоциирующего вещества.

    На  рис. 1 показана зависимость эквивалентной  электропроводности некоторых электролитов от концентрации. Из рисунка видно, что с увеличением с величина λ уменьшается сначала резко, а затем более плавно.  
 

    Интересен график зависимости λ от (2). Как видно из графика (Рис. 2), для сильных электролитов соблюдается медленное линейное уменьшение λ с увеличением , что соответствует эмпирической формуле Кольрауша (1900);

    λ= λ - А                       (22)

    где λ  - предельная эквивалентная электропроводность при бесконечном разведении: с → 0; φ → ∞

    Значение  λ сильных электролитов растет с увеличением φ и ассимптотически приближается к λ. Для слабых электролитов (СН3СООН) значение λ также растет с увеличением φ, но приближение к пределу и величину предела в большинстве случаев практически нельзя установить. Все сказанное выше касалось электропроводности водных растворов. Для электролитов с другими растворителями рассмотренные закономерности сохраняются, но имеются и отступления от них, например на кривых λ-с часто наблюдается минимум (аномальная электропроводность). 
 
 
 

2. Характеристика уксусной кислоты

У́ксусная кислота (эта́новая кислота) — органическое вещество с формулой CH3COOH. Слабая, предельная одноосно́вная карбоновая кислота. Производные уксусной кислоты носят название «ацетаты».

 

Уксусная кислота
 
Общие
Химическая  формула CH3COOH
Молярная  масса 60,05 г/моль
Физические  свойства
Состояние (ст. усл.) бесцветная  жидкость
Плотность 1,0492 г/см³
Термические свойства
Температура плавления 16,75 °C
Температура кипения 118,1 °C
Критическая точка 321,6 °C, 5,79 МПа
Молярная  теплоёмкость (ст. усл.) 123,4 Дж/(моль·К)
Энтальпия образования (ст. усл.) −487 кДж/моль
Химические  свойства
pKa 4,75
Оптические  свойства
Показатель  преломления 1,372

2. Физические  свойства

Ледяная уксусная кислота Уксусная кислота представляет собой бесцветную жидкость с характерным резким запахом и кислым вкусом. Гигроскопична. Неограниченно растворима в воде. Смешивается со многими растворителями; в уксусной кислоте хорошо растворимы органические соединения и газы, такие как HF, HCl, HBr, HI и другие. Существует в виде циклических и линейных димеров

  • Давление паровмм. рт. ст.):
    • 10 (17,1 °C)
    • 40 (42,4 °C)
    • 100 (62,2 °C)
    • 400 (98,1 °C)
    • 560 (109 °C)
    • 1520 (143,5 °C)
    • 3800 (180,3 °C)
  • Диэлектрическая проницаемость: 6,15 (20 °C)
  • Динамическая вязкость жидкостей и газов (в мПа·с): 1,155 (25,2 °C); 0,79 (50 °C)
  • Поверхностное натяжение: 27,8 мН/м (20 °C)
  • Удельная теплоемкость при постоянном давлении: 2,01 Дж/г·K (17 °C)
  • Стандартная энергия Гиббса образования ΔfG0 (298 К, кДж/моль): −392,5 (ж)
  • Стандартная энтропия образования ΔfS0 (298 К, Дж/моль·K): 159,8 (ж)
  • Энтальпия плавления ΔHпл: 11,53 кДж/моль
  • Температура вспышки в воздухе: 38 °C
  • Температура самовоспламенения на воздухе: 454 °C
  • Теплота сгорания: 876,1 кДж/моль

Уксусная кислота образует двойные азеотропные смеси со следующими веществами.

Вещество tкип, °C массовая  доля уксусной кислоты
четыреххлористый  углерод 76,5 3 %
циклогексан 81,8 6,3 %
бензол 88,05 2 %
толуол 104,9 34 %
гептан 91,9 33 %
трихлорэтилен 86,5 4 %
этилбензол 114,65 66 %
о-ксилол 116 76 %
п-ксилол 115,25 72 %
бромоформ 118 83 %
    • Уксусная кислота образует тройные азеотропные смеси
      • с водой и бензолом (tкип 88 °C);
      • с водой и бутилацетатом (tкип 89 °C).
 

3. Получение 

  • Уксусную  кислоту можно получить окислением ацетальдегида кислородом воздуха. Процесс проводят в присутствии катализатора — ацетата марганца (II) Mn(CH3COO)2 при температуре 50-60 °С:

2 CH3CHO + O2 → 2 CH3COOH

3. 1. В  промышленности

3. 1. 1. Окислительные  методы

Ранними промышленными  методами получения уксусной кислоты  были окисление ацетальдегида и бутана.

Информация о работе Определение эквивалентной электропроводности уксусной кислоты при бесконечном разбавлении графическим и аналитическим методом