Автор работы: Пользователь скрыл имя, 12 Января 2010 в 19:18, Не определен
Статья
где Rm0 – сопротивление чистой мембраны;
kадс – коэффициент пропорциональности, показывающей увеличение сопротивления мембраны за счет адсорбции загрязнений в зависимости от их концентрации в исходной воде;
p – коэффициент скорости адсорбции.
Величина Rз зависит от соотношения размеров частиц и пор мембраны, и ее абсолютное значение увеличивается для более тонкопористых мембран. Тем не менее, при микрофильтрации процесс забивания пор носит наиболее значительный характер, поскольку сопротивление мембраны больше, несмотря на то, что относительное падение производительности в течение стадии закупоривания пор намного меньше.
Необходимо отметить, что природная вода – это сложная смесь частиц различной степени дисперсности: от молекул гуминовых кислот до глинистых частичек, поэтому в ней всегда будут присутствовать частицы, соизмеримые с порами ультрафильтрационных мембран. Поэтому полностью избежать стадии закупоривания пор путем подбора размера пор мембраны невозможно.
Для расчета по приведенным формулам необходимо знать следующие величины: содержание взвешенных веществ в исходной воде, сопротивление мембраны до и после закупорки пор, коэффициент a и удельное сопротивление осадка.
Для прогноза падения производительности необходимо знать, какое количество загрязнений остается на мембране после каждого фильтроцикла и через какое время накопится такое их количество, которое вызовет падение производительности, максимально допустимое для данной системы очистки воды. Количество осадка, находящегося внутри мембранного элемента, равно разности между массой взвешенных и коллоидных веществ, задержанных мембраной, и массой загрязнений, вымытых из мембранного элемента во время обратных промывок:
Масса загрязнений, задержанных мембраной:
и масса загрязнений, удаленных при обратных промывках:
где Сисх, Сф, Спр – концентрации взвешенных веществ или трехвалентного железа соответственно в исходной, промывной воде и фильтрате;
Vф и Vпр – объем фильтрата и промывной воды.
В процессе удаления загрязнений при обратной промывке происходит вынос частиц осадка с поверхности и из пор мембраны.
В первые момент времени происходит раскрытие пор, что можно выразить через изменение дополнительного сопротивления Rз:
где kзак – коэффициент раскупорки пор при обратной промывке,
∆Рпр – давление при обратной промывке.
Процесс удаления осадка в зависимости от продолжительности промывки t:
где Mo, М – количество осадка в начале и в конце промывки;
с, k', k'' – коэффициенты, определяемые экспериментально.
Рисунок
5.
График зависимости производительности ультрафильтрационной установки от времени (начальный участок кривой) |
Основываясь на данной модели, можно рассчитать количество загрязнений, накопленных в мембранном аппарате через заданное число фильтроциклов, и определить его производительность к этому времени. Пример результатов расчета по описанной методике приведен на рис. 5. Изменяя продолжительность промывки и фильтроцикла, а также давление фильтрования и промывки, по указанным выше формулам или по экспериментальным данным можно строить графики, отражающие зависимости объемов очищенной и промывной воды от изменяемых параметров. Оптимальные параметры находятся по наибольшей полезной производительности за расчетный промежуток времени (рис. 6).
Рисунок
6.
Пример графической оптимизации продолжительности фильтроцикла |
Изучение зарубежного опыта показывает, что развитие ультрафильтрационных систем очистки воды развивается по нескольким ключевым направлениям, отвечающим возможностям метода и существующим проблемам при подготовке питьевой воды.
Первое направление – использование ультрафильтрации в качестве альтернативы традиционным методам обеззараживания: обычные ультрафильтрационные мембраны с размером пор 0,01–0,05 мкм служат надежным барьером для патогенных микроорганизмов и вирусов. Они позволяют достичь 99,99%-го удаления вирусов и цист патогенных микроорганизмов, в том числе Giardia и Cryptosporidium, и практически 100%-го задержания бактерий и простейших [4].
Такие системы ультрафильтрационной очистки главным образом служат для обработки воды из подземных источников неглубокого залегания, их задачей является безреагентное обеззараживание и осветление воды при периодических повышениях мутности и микробиологической загрязненности воды, происходящих после дождей и весеннего снеготаяния.
Второе направление связано с предочисткой перед обратным осмосом в схемах умягчения, опреснения и обессоливании поверхностных вод для нужд питьевого водоснабжения, промышленности и энергетики.
Используя ультрафильтрацию вместо традиционной схемы водоподготовки, включающей коагуляцию, отстаивание и многоступенчатое фильтрование, можно получить воду с очень низким содержанием взвешенных и коллоидных веществ и в результате повысить производительность и продолжительность службы обратноосмотических мембран, сократить частоту их химических промывок.
Наибольший
интерес представляет третье направление
развития ультрафильтрации – использование
ее как альтернативного
Ультрафильтрационные мембраны обеспечивают более тонкую очистку воды от взвешенных и коллоидных веществ, чем скорые фильтры, и вместе с тем позволяют обрабатывать воду с высокой мутностью без ухудшения качества фильтрата. Этот эффект достигается благодаря особой конструкции мембранных аппаратов и применению различных режимов их эксплуатации. Низкий расход промывных вод (обычно не более 5 %) делает эту технологию более привлекательной.
Для работы ультрафильтрационной установки необходим перепад давления на мембране всего 5–15 м, поэтому энергопотребление таких систем (от 0,2 до 0,5 кВт•ч/м3 [5]) сопоставимо с энергопотреблением традиционных методов фильтрования.
В данной статье мы рассмотрим конкретные примеры применения ультрафильтрационной технологии в данной области, а именно:
– очистка поверхностной воды на водопроводных станциях;
– доочистка воды городского водопровода;
– обезжелезивание и улучшение качества подземных вод;
– подготовка воды для технического водопровода на предприятиях.
Как было сказано выше, во всем мире уже работают водопроводные станции, модернизированные или вновь построенные с использованием ультрафильтрации. Доступность этого метода очистки для городских систем водоподготовки подтверждается цифрами: по данным фирмы «Дегремон», себестоимость питьевой воды, полученной с помощью ультрафильтрации, составляет от 0,03 до 0,25 евро/м3, а общие затраты с учетом замены мембран оцениваются на уровне 0,5–0,6 евро/м3 [6].
Другое достоинство данной технологии – ее гибкость, возможность адаптироваться к изменяющемуся качеству исходной воды. Наконец, одним из решающих факторов является высокая степень обеззараживания воды в сочетании с высокой надежностью сохранения этого показателя в процессе эксплуатации. Извлечение из воды микроорганизмов происходит на основе ситового механизма, что гарантирует высокую эффективность этого метода (для сравнения: размер пор УФ-мембран – 0,005–0,02 мкм, размер цист Giardia и Cryptosporidium – 5-15 мкм, Escherichia coli – 0,5 мкм, бактерии Salmonella, Shigella, Legionella – 0,3-1,5 мкм, вирусов – 0,01–0,03 мкм).
Важно отметить, что цель внедрения на водопроводных станциях процесса ультрафильтрации состоит не в очистке от новых загрязнений (хлорорганика, диоксины, тяжелые металлы), а в более эффективном решении давно существующих проблем – снижении количества остаточного алюминия, повышении барьерной роли сооружений по микробиологическим показателям, стабильном получении фильтрата с мутностью не более 1,5 мг/л (в перспективе – до 0,5 мг/л). Однако следует заметить, что существует метод удаления органических соединений, заключающийся в совместной обработке воды на мембранах с дозированием порошкообразного активированного угля.
Ультрафильтрационные
мембраны также не позволяют существенно
снижать цветность и
Интегрирование
ультрафильтрации в традиционную схему
очистки поверхностных вод
Использование мембранных установок дает следующие преимущества:
– повышает эффективность проведения процесса коагуляции и отстаивания, обеспечивая эффект очищенной воды даже при сниженных дозах коагулянта и неполной коагуляции;
– позволяет отказаться от первичного хлорирования, что, соответственно, снижает опасность образования хлорорганических соединений;
– снижает общую хлороемкость очищенной питьевой воды и, соответственно, дозу хлора. Задача хлорирования очищенной воды сводится к защите от повторного размножения бактерий в водопроводной сети.
Тем не менее, пока
до широкого внедрения новых технологий
далеко, качество воды в городских
квартирах часто оставляет
В первую очередь
ухудшению потребительских
Во-вторых, если в крупных городах вода, выходящая с водопроводной станции, обычно соответствует всем нормативным требованиям, то в ряде малых населенных пунктов повышенная мутность и цветность воды – привычное явление.
Эффективным решением описанной проблемы являются системы доочистки водопроводной воды, основанные на методе ультрафильтрации. Схема и внешний вид установки показаны на рис. 7 и 8.
Рисунок
7.
Технологическая схема установки улучшения качества водопроводной воды 1 – сетчатый фильтр; 2 – магнитный клапан; 3 – ультрафильтрационные аппараты; 4 – напорный бак; 5 – реле давления; 6 – шаровые краны для врезки в водопровод |
Рисунок
8.
Внешний вид
установки для водоснабжения
загородной квартиры |
Информация о работе Метод ультрафильтрации в современном водоснабжении проблемы и перспективы