Метод ультрафильтрации в современном водоснабжении проблемы и перспективы

Автор работы: Пользователь скрыл имя, 12 Января 2010 в 19:18, Не определен

Описание работы

Статья

Файлы: 1 файл

Ультрафильтрационные мембраны и аппараты.doc

— 1.01 Мб (Скачать файл)

где Rm0 – сопротивление чистой мембраны;

kадс – коэффициент пропорциональности, показывающей увеличение сопротивления мембраны за счет адсорбции загрязнений в зависимости от их концентрации в исходной воде;

p – коэффициент  скорости адсорбции.

Величина Rз зависит от соотношения размеров частиц и пор мембраны, и ее абсолютное значение увеличивается для более тонкопористых мембран. Тем не менее, при микрофильтрации процесс забивания пор носит наиболее значительный характер, поскольку сопротивление мембраны больше, несмотря на то, что относительное падение производительности в течение стадии закупоривания пор намного меньше.

Необходимо  отметить, что природная вода – это сложная смесь частиц различной степени дисперсности: от молекул гуминовых кислот до глинистых частичек, поэтому в ней всегда будут присутствовать частицы, соизмеримые с порами ультрафильтрационных мембран. Поэтому полностью избежать стадии закупоривания пор путем подбора размера пор мембраны невозможно.

Для расчета  по приведенным формулам необходимо знать следующие величины: содержание взвешенных веществ в исходной воде, сопротивление мембраны до и после  закупорки пор, коэффициент a и удельное сопротивление осадка.

Для прогноза падения  производительности необходимо знать, какое количество загрязнений остается на мембране после каждого фильтроцикла и через какое время накопится  такое их количество, которое вызовет  падение производительности, максимально  допустимое для данной системы очистки воды. Количество осадка, находящегося внутри мембранного элемента, равно разности между массой взвешенных и коллоидных веществ, задержанных мембраной, и массой загрязнений, вымытых из мембранного элемента во время обратных промывок:

Масса загрязнений, задержанных мембраной:

и масса загрязнений, удаленных при обратных промывках:

где Сисх, Сф, Спр – концентрации взвешенных веществ или трехвалентного железа соответственно в исходной, промывной воде и фильтрате;

Vф и Vпр – объем фильтрата и промывной воды.

В процессе удаления загрязнений при обратной промывке происходит вынос частиц осадка с  поверхности и из пор мембраны.

В первые момент времени происходит раскрытие пор, что можно выразить через изменение дополнительного сопротивления Rз:

где kзак – коэффициент раскупорки пор при обратной промывке,

∆Рпр – давление при обратной промывке.

Процесс удаления осадка в зависимости от продолжительности промывки t:

где Mo, М – количество осадка в начале и в конце промывки;

с, k', k'' – коэффициенты, определяемые экспериментально.

Рисунок 5.

График зависимости  производительности ультрафильтрационной установки от времени (начальный  участок кривой)

Основываясь на данной модели, можно рассчитать количество загрязнений, накопленных в мембранном аппарате через заданное число фильтроциклов, и определить его производительность к этому времени. Пример результатов расчета по описанной методике приведен на рис. 5. Изменяя продолжительность промывки и фильтроцикла, а также давление фильтрования и промывки, по указанным выше формулам или по экспериментальным данным можно строить графики, отражающие зависимости объемов очищенной и промывной воды от изменяемых параметров. Оптимальные параметры находятся по наибольшей полезной производительности за расчетный промежуток времени (рис. 6).

Рисунок 6.

Пример графической  оптимизации продолжительности  фильтроцикла

Применение  и установки

Изучение зарубежного  опыта показывает, что развитие ультрафильтрационных систем очистки воды развивается  по нескольким ключевым направлениям, отвечающим возможностям метода и существующим проблемам при подготовке питьевой воды.

Первое направление – использование ультрафильтрации в качестве альтернативы традиционным методам обеззараживания: обычные ультрафильтрационные мембраны с размером пор 0,01–0,05 мкм служат надежным барьером для патогенных микроорганизмов и вирусов. Они позволяют достичь 99,99%-го удаления вирусов и цист патогенных микроорганизмов, в том числе Giardia и Cryptosporidium, и практически 100%-го задержания бактерий и простейших [4].

Такие системы  ультрафильтрационной очистки главным  образом служат для обработки  воды из подземных источников неглубокого залегания, их задачей является безреагентное обеззараживание и осветление воды при периодических повышениях мутности и микробиологической загрязненности воды, происходящих после дождей и весеннего снеготаяния.

Второе направление связано с предочисткой перед обратным осмосом в схемах умягчения, опреснения и обессоливании поверхностных вод для нужд питьевого водоснабжения, промышленности и энергетики.

Используя ультрафильтрацию вместо традиционной схемы водоподготовки, включающей коагуляцию, отстаивание и многоступенчатое фильтрование, можно получить воду с очень низким содержанием взвешенных и коллоидных веществ и в результате повысить производительность и продолжительность службы обратноосмотических мембран, сократить частоту их химических промывок.

Наибольший  интерес представляет третье направление  развития ультрафильтрации – использование  ее как альтернативного высокотехнологичного процесса в схемах очистки и кондиционирования  природной воды. Главное достоинство  данной области применения мембранной технологии заключается в возможности получения высоких эффектов очистки без использования дополнительных стадий обработки воды и реагентов.

Ультрафильтрационные  мембраны обеспечивают более тонкую очистку воды от взвешенных и коллоидных веществ, чем скорые фильтры, и вместе с тем позволяют обрабатывать воду с высокой мутностью без ухудшения качества фильтрата. Этот эффект достигается благодаря особой конструкции мембранных аппаратов и применению различных режимов их эксплуатации. Низкий расход промывных вод (обычно не более 5 %) делает эту технологию более привлекательной.

Для работы ультрафильтрационной установки необходим перепад  давления на мембране всего 5–15 м, поэтому  энергопотребление таких систем (от 0,2 до 0,5 кВт•ч/м3 [5]) сопоставимо с энергопотреблением традиционных методов фильтрования.

В данной статье мы рассмотрим конкретные примеры применения ультрафильтрационной технологии в  данной области, а именно:

– очистка поверхностной  воды на водопроводных станциях;

– доочистка воды городского водопровода;

– обезжелезивание  и улучшение качества подземных  вод;

– подготовка воды для технического водопровода на предприятиях.

Как было сказано  выше, во всем мире уже работают водопроводные  станции, модернизированные или  вновь построенные с использованием ультрафильтрации. Доступность этого метода очистки для городских систем водоподготовки подтверждается цифрами: по данным фирмы «Дегремон», себестоимость питьевой воды, полученной с помощью ультрафильтрации, составляет от 0,03 до 0,25 евро/м3, а общие затраты с учетом замены мембран оцениваются на уровне 0,5–0,6 евро/м3 [6].

Другое достоинство  данной технологии – ее гибкость, возможность  адаптироваться к изменяющемуся  качеству исходной воды. Наконец, одним  из решающих факторов является высокая степень обеззараживания воды в сочетании с высокой надежностью сохранения этого показателя в процессе эксплуатации. Извлечение из воды микроорганизмов происходит на основе ситового механизма, что гарантирует высокую эффективность этого метода (для сравнения: размер пор УФ-мембран – 0,005–0,02 мкм, размер цист Giardia и Cryptosporidium – 5-15 мкм, Escherichia coli – 0,5 мкм, бактерии Salmonella, Shigella, Legionella – 0,3-1,5 мкм, вирусов – 0,01–0,03 мкм).

Важно отметить, что цель внедрения на водопроводных станциях процесса ультрафильтрации состоит не в очистке от новых загрязнений (хлорорганика, диоксины, тяжелые металлы), а в более эффективном решении давно существующих проблем – снижении количества остаточного алюминия, повышении барьерной роли сооружений по микробиологическим показателям, стабильном получении фильтрата с мутностью не более 1,5 мг/л (в перспективе – до 0,5 мг/л). Однако следует заметить, что существует метод удаления органических соединений, заключающийся в совместной обработке воды на мембранах с дозированием порошкообразного активированного угля.

Ультрафильтрационные  мембраны также не позволяют существенно  снижать цветность и окисляемость воды. Большинство органических соединений, содержащихся в природных водах, имеет молекулярный вес менее 3000–5000 и размеры молекул от 10 нм и менее. Следовательно, типичные ультрафильтрационные мембраны с размером пор 0,01 мкм и отсечением по молекулярной массе порядка 100 000–200 000 не должны задерживать эти вещества [7]. Исключение составляют некоторые типы вод с преобладанием высокомолекулярных гуминовых веществ. Эффективность очистки поверхностных вод по цветности и окисляемости на таких мембранах составляет соответственно 20–30 % и 5–15 %. Использование предварительной коагуляции перед подачей воды на ультрафильтрационную установку позволяет повысить эффект очистки примерно в два раза [8].

Интегрирование  ультрафильтрации в традиционную схему  очистки поверхностных вод может  осуществляться на различных стадиях  технологической цепочки. На существующих станциях мембранные установки ультрафильтрации наиболее эффективно применять после отстойников вместо скорых фильтров. Для защиты мембран от засорения крупными частицами перед ультрафильтрационной установкой помещают фильтр предочистки – самопромывающийся сетчатый фильтр с размером ячеек 100–200 мкм.

Использование мембранных установок дает следующие  преимущества:

– повышает эффективность  проведения процесса коагуляции и отстаивания, обеспечивая эффект очищенной воды даже при сниженных дозах коагулянта и неполной коагуляции;

– позволяет  отказаться от первичного хлорирования, что, соответственно, снижает опасность  образования хлорорганических соединений;

– снижает общую  хлороемкость очищенной питьевой воды и, соответственно, дозу хлора. Задача хлорирования очищенной воды сводится к защите от повторного размножения бактерий в водопроводной сети.

Тем не менее, пока до широкого внедрения новых технологий далеко, качество воды в городских  квартирах часто оставляет желать лучшего. А для создания комфортного уровня жизни необходима не только питьевая вода высокого качества, но также наличие чистой и прозрачной воды для душа, умывальника, стиральной и посудомоечной машины.

В первую очередь  ухудшению потребительских свойств  воды, льющейся из крана, мы обязаны  неудовлетворительному состоянию городских водопроводных сетей. При перебоях в подаче воды в ней появляется большое количество окалины и ржавчины, поступающей из корродирующих водопроводных труб. Периодическое появление желтовато-бурой воды характерно и для квартир в пригородах, где водоснабжение ведется из артезианских скважин с высоким содержанием железа. И если крупные частицы окалины и песка задерживаются простыми сетчатыми фильтрами, то более мелкая взвесь и железо беспрепятственно проходят через них.

Во-вторых, если в крупных городах вода, выходящая с водопроводной станции, обычно соответствует всем нормативным требованиям, то в ряде малых населенных пунктов повышенная мутность и цветность воды – привычное явление.

Эффективным решением описанной проблемы являются системы доочистки водопроводной воды, основанные на методе ультрафильтрации. Схема и внешний вид установки показаны на рис. 7 и 8.

Рисунок 7.

Технологическая схема установки улучшения качества водопроводной воды 1 – сетчатый фильтр; 2 – магнитный клапан; 3 – ультрафильтрационные аппараты; 4 – напорный бак; 5 – реле давления; 6 – шаровые краны для врезки в водопровод

Рисунок 8.

Внешний вид  установки для водоснабжения  загородной квартиры  
а – размещенной в техническом шкафу;  
б – компактный вариант под умывальником

Информация о работе Метод ультрафильтрации в современном водоснабжении проблемы и перспективы