Автор работы: Пользователь скрыл имя, 12 Января 2010 в 19:18, Не определен
Статья
А. Г. Первов, А. П. Андрианов, Московский государственный строительный университет
Ультрафильтрационная технология разделения растворов известна давно, она успешно применяется в пищевой, химической, микробиологической и других отраслях промышленности, однако в сфере водоснабжения об этом методе всерьез заговорили всего три-четыре года назад.
Это связано
с появлением на рынке промышленно
освоенных и коммерчески
Переход к ультрафильтрации вызван рядом причин, прежде всего – неудовлетворительным качеством питьевой воды в городах, связанным с ограниченными возможностями существующих очистных сооружений. Песчаные зернистые фильтры, входящие в состав всех станций водоподготовки, часто не в состоянии задержать очень мелкие частички (коллоиды), болезнетворные бактерии и вирусы, обычно развивающиеся в этих фильтрах. Именно на ультрафильтрационные мембраны «возложили» обязанность доочистки питьевой воды, ведь эти мембраны имеют поры размером 0,01–0,1 микрон, позволяющие задерживать бактерии и вирусы.
«Оживление» и интерес к технологии ультрафильтрации среди специалистов подогревается растущими масштабами ее применения: в США, Великобритании, Нидерландах, Малайзии, Сингапуре, Париже, а теперь и в Москве сооружаются и работают крупные станции водоподготовки, пропускающие сотни тысяч м3 воды в день.
Объемы производства и продаж мембранных аппаратов и систем очистки воды на их основе постоянно возрастают, однако существует ряд трудностей, возникающих на всех стадиях их внедрения: с одной стороны, среди инженеров по водоснабжению мало специалистов по мембранам, поскольку мембранные технологии не входили в должном объеме в программу вузовской подготовки. С другой стороны, среди производителей мембран не так много можно найти специалистов, детально разбирающихся в проблемах современного питьевого водоснабжения.
Как известно, до сих пор еще не создано идеального «универсального» оборудования, и существующие технологии прорабатываются лишь для определенных ограниченных условий. Расширение области применения мембран, поиск новых «ниш» для их внедрения – процесс длительный, требующий накопления опыта, изучения процесса очистки.
Внезапно появившаяся
на рынке и часто излишне
Ключевым элементом любой ультрафильтрационной системы очистки воды являются мембранные аппараты, поэтому от выбора типа мембран, конструкции мембранных модулей и режима их работы будет зависеть успех работы всей установки.
Что понимают под
мембранной ультрафильтрацией
Ультрафильтрация – это баромембранный процесс, заключающийся в том, что жидкость под давлением «продавливается» через полупроницаемую перегородку. Размер отверстий (пор) ультрафильтрационных мембран лежит в пределах от 5 нм до 0,05–0,1 мкм. Главное отличие мембраной фильтрации от обычного объемного фильтрования в том, что подавляющее большинство всех задерживаемых веществ накапливается на поверхности мембраны, образуя дополнительный фильтрующий слой осадка, который обладает своим сопротивлением.
Наиболее экономичный режим работы ультрафильтрационных установок – «тупиковый», когда вся исходная вода пропускается через мембрану. В ряде случаев для борьбы с ростом осадка над поверхностью мембраны создают дополнительный поток из обрабатываемой жидкости, который размывает накапливающийся осадок. Жидкость, содержащая удаленные с поверхности мембраны загрязнения, выводится из разделительного аппарата. Для более эффективного удаления загрязнений с поверхности и из пор мембраны используют метод обратных промывок, при котором очищенную воду (фильтрат) пропускают через мембрану в направлении, обратном направлению фильтрования. Такие промывки производятся намного чаще, чем промывки обычных фильтров с зернистой загрузкой – от 1 до 5 раз в час, но их продолжительность составляет всего 10–30 секунд, поэтому объем сбрасываемой воды составляет 2–5 % от объема фильтрата.
Для предотвращения биологического зарастания ультрафильтрационных мембран в воду для обратной промывки мембранных элементов добавляют дезинфектант, чаще всего, гипохлорит натрия.
В процессе длительной работы производительность мембранных аппаратов постепенно уменьшается, т. к. на поверхности и в порах мембраны сорбируются различные вещества и отлагаются частички загрязнений, увеличивающие общее гидравлическое сопротивление мембранных аппаратов. Для восстановления первоначальной производительности несколько раз в год проводится химическая промывка мембранных аппаратов специальными кислотными и щелочными реагентами для удаления накопленных загрязнений.
Таким образом, основные задачи при проектировании мембранных установок – это подбор оптимального типа мембран в зависимости от состава исходной воды и определение оптимального режима эксплуатации мембранной установки, при котором загрязнение мембран было бы минимальным. Надежность работы обеспечивается правильным выбором материала мембраны, который был бы наименее чувствителен к загрязнениям, характерным для данного состава исходной воды, и конструкцией аппарата, которая должна позволять проводить гидравлические промывки мембран с максимальной эффективностью. Кроме того, важно уметь прогнозировать работу установки в течение длительного периода эксплуатации.
В качестве материала для изготовления ультрафильтрационных мембран в основном используются полимерные вещества – ацетат целлюлозы, полисульфон, полиэтерсульфон, полиамид, полиимид, поливинилиденфторид, полиакрилонитрил и их производные. Большинство ультрафильтрационных мембран – асимметричные, они состоят из тонкого селективного слоя толщиной несколько десятков мк или менее и пористой подложки, которая обеспечивает механическую прочность (рис. 1). Полимерным мембранам при их изготовлении могут придаваться разнообразные свойства, что позволяет управлять их селективными характеристиками и устойчивостью к загрязнению различными веществами.
Рисунок
1.
Микрофотографии
(на сканирующем электронном |
Особое место занимают трековые мембраны (рис. 1в), получаемые путем вытравливания треков, оставшихся в полимерной пленке после ее облучения потоком высокоэнергетических частиц. Эти мембраны характеризуются очень узким распределением пор по размеру и симметричной структурой. Недостатком таких мембран является низкая поверхностная пористость и относительно высокая стоимость.
Большинство современных полимерных мембран устойчивы к воздействию микроорганизмов и химических соединений в широком диапазоне рH, обладают высокой селективностью и производительностью, допускают кратковременное воздействие сильных окислителей: свободного хлора, озона. Свойства мембран лишь незначительно ухудшаются в течение всего срока службы, который составляет 5 и более лет. Старение мембран может происходить из-за истончения верхнего слоя при взаимодействии с взвешенными и абразивными веществами, содержащимися в обрабатываемой воде, или очищающими химическими агентами.
Для производства ультрафильтрационных мембран также используют неорганические (керамические и металлокерамические) материалы на основе окислов Al2O3, TiO2, ZnO2. Керамические мембраны характеризуются долговечностью, высокой физической, химической и бактериальной стойкостью, что позволяет им работать в самых жестких условиях. Их применение сдерживается невысокой плотностью упаковки в мембранных модулях и трудностями получения пор меньшего диаметра.
В питьевом водоснабжении наибольшее распространение получили мембранные аппараты с полыми волокнами, или капиллярами, намного реже используются рулонные элементы и аппараты с трубчатыми мембранами. Каждой конструкции присущи свои достоинства и недостатки.
Капиллярные или половолоконные элементы состоят из пучков тонких полимерных трубчатых мембран диаметром 0,7–2,0 мм, фильтрование может производится «изнутри-наружу» или «снаружи-вовнутрь» (рис. 2). Они характеризуются довольно высокой плотностью «упаковки» мембран (площадь мембран в одном модуле может достигать 50–60 м2), высокими удельными потоками и хорошей гидродинамикой внутри волокон, что выражается в меньшей склонности к засорению внутренних напорных каналов мембран. Мембранные аппараты с полыми волокнами производятся зарубежными фирмами Norit, Aquasource, Inge, Koch, Hydranautics и др.
Рисунок 2 (подробнее) Устройство и внешний вид половолоконного ультрафильтрационного аппарата |
Рулонные элементы изготавливаются из плоских мембран, для формирования напорного и фильтратного каналов используются различные дренажные материалы – сетки (рис. 3). Рулонные элементы просты в эксплуатации, также обеспечивают высокую плотность «упаковки» мембран, достаточно устойчивы к загрязнению и гидравлическим нагрузкам. Существуют также аппараты с плоскими фильтрационными модулями, позволяющие получить лучшие гидравлические условия и упростить замену дефектных мембран. Производители рулонных аппаратов с плоскими мембранами: ЗАО НТЦ «Владипор», TriSep, Koch, General Electric (Osmonics), Alfa-Laval, Rochem (плоские фильтрационные элементы).
Рисунок 3 (подробнее) Устройство и внешний вид рулонного мембранного элемента |
Особое место занимают так называемые погруженные мембраны, в которых процесс ведется не под действием избыточного давления, а под действием вакуума, который прикладывается к фильтратному тракту. Безкорпусные мембранные блоки с полыми волокнами (производители – Zenon, Koch) или рулонные элементы (TpiSep) погружаются в резервуар или канал исходной воды, туда же подается воздух для очистки поверхности мембран (рис. 4). Задержанные загрязнения удаляются с поверхности мембраны с помощью обратных промывок, осаждаются на дно резервуара и выводятся в дренаж. Преимущество таких систем: возможность обрабатывать без предварительной очистки воду с высокой мутностью, низкое энергопотребление (0,05–0,1 кВт•ч/м3), меньшее количество распределительных трубопроводов и арматуры.
Рисунок
4.
Внешний вид погружных модулей с половолоконными а – и рулонными; б – мембранными элементами |
Производительность
ультрафильтрационного
где ∆Р – разница давлений над и под мембраной (исходной воды и фильтрата);
S – площадь мембран в аппарате;
m – динамическая вязкость воды;
Rм – сопротивление мембраны;
Rз – дополнительное сопротивление мембраны за счет закупоривания ее пор;
Rос – сопротивление осадка на поверхности мембраны.
Изучение экспериментальных зависимостей падения производительности мембран, полученных различными исследователями [1, 2], а также в наших опытах по ультрафильтрации речной воды и раствора хлорида железа [3] показало, что наилучшим образом они отражаются следующим уравнением:
где а – коэффициент,
описывающий процесс
Сисх – концентрация загрязнений в исходной воде;
b – коэффициент,
описывающий образование
rm – удельное сопротивление осадка.
В результате адсорбции на мембране различных загрязнений ее производительность постепенно уменьшается, что описывается зависимостью:
Информация о работе Метод ультрафильтрации в современном водоснабжении проблемы и перспективы