Коррозия и защита металлов

Автор работы: Пользователь скрыл имя, 30 Мая 2010 в 01:15, Не определен

Описание работы

Коррозия. ЕЕ виды. Методы борьбы
Получение металлов из их природных соединений всегда сопровождается значительной затратой энергии. Исключение составляют только металлы, встречающиеся в природе в свободном виде: золото, серебро, платина, ртуть. Энергия, затраченная на получение металлов, накапливается в них как свободная энергия Гиббса и делает их химически активными веществами, переходящими в результате взаимодействия с окружающей средой в состояние положительно заряженных ионов:

Файлы: 1 файл

korroziya_i_zaschita_metallov.doc

— 265.50 Кб (Скачать файл)

   Если  в толще образовавшейся пленки преимущественно  движутся ионы O2-, то это приводит к утолщению пленки за счет уменьшения толщины металла, т. е. общая толщина коррелирующего образца практически не изменяется.

   Наоборот, если преимущественно перемещаются ионы Ме+, то пленка растет в направлении газовой фазы (O2) и размер корродирующего образца растет.

   Может быть и промежуточный случай — одновременного движения ионов O2- и Ме+, что вызывает рост пленки в обоих направлениях. Диффузия ионов создает неравномерное электрическое поле вблизи поверхности металла

   Оксидные, нитридные и другие пленки на металлах обычно приобретают свойства полупроводимости.

   Сложный теоретический вопрос о развитии оксидных и иных слоев на поверхности металлов имеет практическое значение в технологии машиностроения, так как изменение размеров деталей после их оксидирования необходимо учитывать (допуск на обработку).

   У металлов с переменной степенью окисления  строение пленки по толщине неодинаковое.

   Наилучшие по стойкости оксидные пленки обладают структурой шпинелей RO *R2O2; образуясь на поверхности сплавов (IХ18Н9), они служат надежной защитой от коррозии (FeO * Cr2O3 или NiO * Cr2O3).

   Практически вообще не пассивируются при высоких  температурах d-металлы с высокими степенями окисления, образующие летучие оксиды: Мо, W, Nb, Та, Rе. Температуры кипения их оксидов ниже температур плавления соответствующих металлов, и поэтому оксиды улетают в газовую фазу, обнажая поверхность металла для дальнейшего окисления.

   Изменение состава металла  в результате газовой  коррозии. Если образование оксидного слоя при высокой температуре сопровождается интенсивной диффузией кислорода внутрь металла, то это приводит к изменению его состава за счет окисления легирующих компонентов. Особенно это заметно на конструкционных сталях, в поверхностных слоях которых происходит окисление углерода — ферритная полоска, образование которой сопровождается потерей прочности, особенно для тонкостенных изделий. Взаимодействие сталей с окисляющими средами можно представить в виде следующих уравнений:

   Последний случай — наиболее опасный, так как водород, растворяясь в стали, создает повышенную хрупкость металла. При тонкостенных конструкциях это влияние газовой коррозии на снижение прочности особенно заметно.

   Химическая  коррозия в неводных средах. Эти процессы характерны для эксплуатации химико-технологического оборудования. Несмотря на сложность их развития, в принципе они представляют собой обычные гетерогенные химические реакции:

(где R—органические радикалы).

   Разрыв  ковалентных связей и переход  их в ионные легче совершается при повышенных температурах. Особенно легко перестройка связей идет в присутствии следов воды. Последнее обстоятельство имеет место при коррозии питательной аппаратуры двигателей внутреннего сгорания (плунжерные пары, форсунки), работающих на топливе с примесями сернистых соединений.

ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ ПОД ДЕЙСТВИЕМ  ВНУТРЕННИХ МАКРО- И МИКРОГАЛЬВАНИЧЕСКИХ ПАР

   Раньше  электрохимическую коррозию называли гальванической коррозией, так как  разрушение металла происходит под действием возникающих гальванических пар.

   Рассмотрим  различные случаи возникновения  коррозионных гальванических пар.

   1. Контакт с электролитом двух разных металлов в случае сочетания в одном узле или детали металлов различной активности в данной среде, или в случае применения сплава эвтектического типа из двух металлов разной активности.

   2. Контакт металла и его соединения, обладающего металлообразными или полупроводниковыми свойствами. В любом случае свободный металл имеет отрицательный электрический заряд, а соединение — положительный заряд, так как в нем часть электронов проводимости связана. Это также справедливо и для интер-металлидов.

   3. Различные концентрации электролитов или воздуха, растворенного в жидком электролите.

   4. Различный уровень механических напряжений в одной и той же детали. 

    Механизм электрохимической  коррозии, определяемый разностью потенциалов  пассивных (катодных) и активных (анодных) участков, сводится к работе гальванического элемента. Пока коррозионный элемент разомкнут, на анодном и катодном участках реакции в прямом и обратном направлениях идут с одинаковой скоростью – обратимо (Ме       Меn+ + ne). Изменение термодинамического потенциала этих реакций    G стандартный обратимый электродный потенциал V0обр, рассчитанный для температуры 250С и активности(концентрации) собственных ионов в водном растворе, равной единице. В замкнутом коррозионном элементе скорости реакции в прямом и обратном направлениях становятся неодинаковыми. Реакция на аноде идет преимущественно в  направлении ионизации металла, а на катоде – в направление восстановления Н+ или О2. Возникает коррозионный ток, как результат перемещения электронов в металле и ионов в электролите. Под влиянием этого тока на аноде и катоде устанавливаются необратимые электродные потенциалы Vн. Необратимые электродные потенциалы определяются экспериментально. По  сравнению с V0обр они менее отрицательны для анода, и более положительны для катода. Разница значений обратимого потенциала и необратимого потенциалов пропорциональна величине тока в коррозионном элементе. Коэффициенты пропорциональности Pa и Рк называют поляризуемостью  

   V0 обра   - Vна  =   Pa I             V0 обрк  - Vнк = РкI

   Анодную и катодную поляризуемость металла  определяют экспериментально.

   Значение  коррозионного тока I, который устанавливается в коррозионном элементе и определяет скорость коррозии, выражается формулой

   I = (V обрк  - V обра)/(R+ Pa  + Рк), где R- омическое сопротивление элемента. Приведенная формула используется для качественной оценки и выполнения контролирующего фактора, определяющего коррозионную стойкость металла. Количественную оценку получают экспериментально в условиях, максимально приближенных к эксплутационным.        

       На механизм низкотемпературной коррозии влияет много различных причин: переменная температура и влажность воздуха, переменный состав газовой и электролитной среды и даже бактериальная флора, например при почвенной коррозии, так как некоторые виды бактерий способствуют окислению железа. Развитие коррозии в результате контакта разных металлов можно иллюстрировать схемой, представленной на рис. 1. Наибольшее коррозионное разрушение наблюдается рядом с контактом, так как здесь сопротивление наименьшее и, следовательно, наибольшая плотность тока.

   

   Рис. 1. Разрушение в месте контакта разных металлов

   Если  возникновение разности потенциалов  вызвано применением эвтектических  сплавов, состоящих из металлов различной  активности, то не всегда можно руководствоваться данными по стандартным потенциалам растворения, так как активность изменяется в зависимости от состава электролита и рН среды.

   Так, например, стандартный потенциал алюминия меньше стандартного потенциала цинка, а в растворе поваренной соли получается наоборот — eА1>eZn, и в данной паре цинк будет анодом. При контакте эвтектического сплава с электролитом может быть два случая: 1) коррозия сведется к вытравливанию из поверхностного слоя одного из компонентов (селективная коррозия); 2) коррозия может перейти в интеркристаллитную, если наиболее активный элемент входит только в состав эвтектики, разделяющей кристаллические зерна металлов. В сплавах металлов А и В, обладающих разной активностью (eА<eB), сплав состава 1—1 будет подвергаться селективной коррозии, а сплав состава 2—2 — интеркристаллитной, потому что активный металл А весь входит в состав эвтектики. 
 

   Ввиду малой поверхности зерен А  в эвтектике плотность тока будет  большая и разрушение эвтектики пойдет в глубину. Поэтому рекомендуется в коррозионных средах применять только сплавы типа твердого раствора (Л-61, IХ18Н10 и т. д.).

   Сам процесс  взаимодействия металлов с электролитной  средой может происходить или с водородной, или с кислородной деполяризацией в зависимости от рН среды.

   Различные концентрации электролита могут  вызвать коррозию, создавая пару даже с одинаковыми металлами. Различное содержание кислорода также приводит к образованию гальванической пары — менее окисленный и более окисленный металл. Примером может служить коррозия металла под каплей воды (точечная коррозия, переходящая в питтинг); схема этого процесса приведена на рис. 2. 

   

   Рис. 2. Коррозия стали под неподвижной каплей воды

   Поверхностные слои воды содержат больше кислорода, чем внутренние, и поэтому средняя часть смоченного металла оказывается более активной (анод), чем внешняя (катод). После высыхания капли в ее центре появляется довольно глубокое пятно ржавчины. Если взять достаточно тонкую (0,2—0,1 мм) пластинку, например стали, то можно получить сквозное отверстие. Такие процессы часто наблюдаются при атмосферной или почвенной коррозии.

   Коррозионные  пары могут возникать при действии внешних или внутренних механических напряжений (остаточных напряжений, например при сварке). Если пластинку стали, дюраля или титанового сплава согнуть и в напряженном состоянии погрузить в коррозионную среду, то на растянутом слое (внешний) через относительно короткое время возникнут трещины (рис. 3), а внутренний сжатый слой будет оставаться без изменений. Растягивающие усилия особенно опасны, так как в этом случае металл повышает свою активность. 

   

   Рис. 3. Коррозия пластинки  в напряженном состоянии

   Если  согнутую упруго пластинку (см. рис. 3) термически обработать и упругие деформации перейдут в пластические (явление релаксации), то разности потенциалов не возникает. Таким образом, при изготовлении деталей и узлов машин для снятия остаточных напряжений всегда следует термически обрабатывать изделия, если эти изделия предназначены для работы в сильно коррелирующих средах.

ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ, ВОЗНИКАЮЩАЯ  ПОД ДЕЙСТВИЕМ ВНЕШНЕЙ РАЗНОСТИ ПОТЕНЦИАЛОВ

   Эксплуатация  деталей и узлов машин в коррозионной среде под действием наложенной разности потенциалов встречается очень редко, но может быть случайное возникновение разности потенциалов за счет нарушения изоляции, утечки тока из соседних электрических линий и т. д.

   Эти случайно наложенные разности потенциалов могут приводить к опасным коррозионным разрушениям, обычно локального типа. Очень часто возникновение падения потенциала в почвах создается за счет электрического рельсового транспорта. Транспорт троллейбусного типа, работающий на двух фазах (+ и -), обычно при нормальной эксплуатации опасности не представляет.

   Рассмотрим  коррозионное разрушение закладных  металлических конструкций (трубы, детали фундаментов, кабели) под действием  утечки тока, например, с трамвайного рельсового пути, который заглублен в грунт и может иметь высокое электрическое сопротивление за счет плохо проводящих электрический ток стыков рельс. В этом случае при хорошо проводящей влажной почве возможно разветвление тока, причем часть его пойдет через почву кратчайшим путем. На рис. 4 показана схема ответвления тока с трамвайного рельса, который является обычно отрицательным полюсом (+ на проводе). На пути так называемого «блуждающего» тока может находиться металлическое сооружение — плохо изолированная труба. Примем условно, что электролит, пропитывающий почву, содержит ионыCl-, Fe3+ и Na+. Электроны, выходящие из металла (рельса), по электролиту перемещаться не могут и в месте выхода их из рельса разряжаются ионы Н+ или Fe3+ (что может привести даже  к наращиванию рельса выделившимся железом). Ионы хлора будут перемещаться по почве, подходить к трубе и, разряжаясь, переводить металл в раствор; на выходе электронов из металла (трубы) также не будет коррозии, тогда как на входе в рельс ионы хлора будут вызывать коррозию. Аналогичные явления могут наблюдаться и при переменном токе, но они менее опасны.

   

   Рис. 4. Коррозия за счет блуждающих токов

   Тщательное  соблюдение требований к электрической  изоляции (битум, полиэтилен) закладных изделий и правильной эксплуатации электрических сетей может исключить электрокоррозию, развивающуюся главным образом в городах и на предприятиях.

3АЩИТА  МЕТАЛЛОВ ОТ КОРРОЗИИ

   Защита  металлов от коррозионного разрушения состоит из целого комплекса мероприятий по увеличению работоспособности и надежности машин и конструкций в данной среде. Часть этих мер закладывается еще в процессе проектирования, часть — в процессе изготовления машин или конструкций, а остальные меры должны быть приняты в процессе эксплуатации.

Информация о работе Коррозия и защита металлов