Автор работы: Пользователь скрыл имя, 10 Декабря 2015 в 15:01, курсовая работа
Охрана окружающей среды является важнейшей государственной задачей. Для предотвращения или снижения загрязнения окружающей среды намечены и проводятся различные мероприятия: технологические, технические, санитарно-технические, медицинские, правовые, организационные. В основе всех мероприятий лежит контроль над содержанием вредных веществ. Контроль необходим для получения информации об уровне загрязнения, а так же об источниках выбросов, причинах и факторах, определяющих загрязнения.
ВВЕДЕНИЕ…………………………………………………………………………….41ОБЩЕЕ ЗНАКОМСТВО С ПРЕДПАРИЯТИЕМ И ЕГО ПОДРАЗДЕЛЕНИЯМИ………………………………………………………………..5
1.1 Инструктаж по техники безопасности и противопожарная безопасность……..5
1.2 История развития предприятия…………………………………………………..10
1.3 Мероприятия по охране окружающей среды...…………………………………11
2 ОРГАНИЗАЦИЯ РАБОТЫ ХИМИЧЕСКОЙ ЛАБОРАТОРИИ………………...13
2.1 Права и обязанности лаборанта………………………………………….………13
2.2 Оборудование лаборатории. Объекты для анализа……………………………..14
2.3 Выполнение анализов химическими методами…………………………………21
3 ИЗУЧЕНИЕ РАБОТЫ ЛАБОРАТОРИИ ИНСТРУМЕНТАЛЬНЫХ МЕТОДОВ АНАЛИЗА …………………………………………………………………………….31
3.1 Выполнение анализов инструментальными методами ………………………...31
3.1.1 Фотометрический метод определения концентрации сульфатов в сточных водах …………………………………………………………………………………...31
3.1.2 Фотометрический метод определения массовой концентрации алюминия………………………………………………………………………………32
3.1.3 Фотометрический метод определения массовой концентрации мышьяка……………………………………………………………………………..…36
3.1.4 Фотомерический метод определения фенолов с применением 4-аминоантипирина……………………………………………………………………39 ВЫВОД………………………………………………………………………………...42 ЛИТЕРАТУРА………………………………………………………………………...43
Сульфат-ион осаждают в кислой среде хлоридом бария в виде малорастворимого сернокислого бария. Осадок отмывают, отфильтровывают, высушивают, прокаливают и взвешивают в виде BaSO4.
Определению мешают взвешенные вещества, которые устраняются фильтрованием.
Отбор, предварительная подготовка и условия хранения проб. Отбор проб производится согласно правилам отбора, хранения и консервирования проб. Количество отобранной пробы должно быть не менее 1 дм3.
Пробы обычно не консервируют.
Включение и подготовка электроплитки, сушильного шкафа и муфельной печи выполняется в соответствии с инструкцией по эксплуатации данного оборудования.
Простые пронумерованные
тигли прокаливают при
Разница в двух последовательных взвешиваниях не должна превышать 0,0002 г. В этом случае прокаливание считается законченным.
Приготовление растворов, реактивов:
- раствор хлористого бария 5%-ный: 5 г хлористого бария (BaCl3*2H2О) растворяют в дистиллированной воде и доводят объем до 100 см3;
- раствор соляной кислоты HCl (1:1). Один объем дистиллированной воды смешивают с одним объемом HCl;
- раствор метилоранжа 0,1% (водный).
100 см3 исследуемой воды выпаривают в химическом стакане на песочной или водяной бане до объема 50-60 см3, прибавляют 1,0 см3 HCl (1:1) или несколько капель концентрированного HCl до розового окрашивания по метилоранжу.
Сняв с огня, сразу же к горячему раствору прибавляют по каплям и при перемешивании нагретый до 70-80ºС 5%-ный раствор хлористого бария BaCl2. Последний должен прибавляться в избытке, что определяется по прекращению образования осадка (после отстаивания осадка дальнейшее прибавление осадителя не должно вызывать помутнение раствора). нагревают 1 час на песочной или водяной бане и оставляют на 8-12 часов при комнатной температуре. После отстаивания осадка его фильтруют через беззольный фильтр «синяя лента», промывают горячей дистиллированной водой.
Под конец промывания фильтрат проверяют в отдельной порции на полноту промывания, для чего часть его собирают из воронки на часовое стекло и прибавляют к каплю раствора азотнокислого серебра AgNO3. Если фильтрат не мутнеет, промывание считают законченным. Осадок сушат на воронке в сушильном шкафу, а потом сжигают в предварительно подготовленном фарфоровом тигле. Нагревание проводится до температуры не выше 800ºС, т.к. в противном случае может происходить частичное разложение осадка.
Концентрация сульфат-ион в испытуемой воде вычисляется по формуле:
Х = ,
где Х – концентрация сульфат-иона в анализируемой в анализируемой пробе воды, мг/дм3;
– масса осадка сульфата бария, мг;
– объем испытуемой воды, см3;
0,4116 – коэффициент пересчета полученной массы сернокислого бария в сульфат-ионы.
Результаты анализа
Х1 = 8,0 мг/дм3
Х2 = 8,5 мг/дм3
Х3 = 9,0 мг/дм3
Вывод: Допустимые расхождения между повторными определениями сульфатов: 3 - 5 мг/дм3, если их содержание не превышает 25 мг/дм3; 5 - 10 мг/дм3, если их содержание не превышает 25 - 300 мг/дм3; при более высоких концентрациях - 3 % отн.
3.1.2 Фотометрический метод определения массовой концентрации алюминия (ГОСТ 18165-89)
Метод основан на способности иона алюминия образовывать с алюминоном лак оранжево-красного цвета, представляющий собой комплексное соединение. Реакция осуществляется в слабо-кислом растворе при рH 4,50-4,65 в присутствии сульфата аммония в качестве стабилизатора окраски лака, которая фотометрируется при длине волны 525-540 нм.
Предел обнаружения алюминия с доверительной вероятностью Р = 0,95 составляет 0,02 мг/дм3 при объёме пробы 25см3.
При содержании фторидов более 0,3 мг/дм3, фосфатов и полифосфатов более 0,2 мг/дм3, а также при наличии органических веществ для устранения их мешающего влияния, пробу воды предварительно обрабатывают надсернокислым аммонием. Для этого 25,0 см3 (или меньше) пробы помещают в термостойкий стакан вместимостью 50 см3, приливают 0,5 см3 свежеприготовленного раствора надсернокислого аммония и выпаривают пробу до белых густых паров серной кислоты (почти досуха).
Стакан охлаждают, обливают стенки небольшим количеством дистиллированной воды и выпаривание повторяют. К влажному остатку после охлаждения порциями приливают 25 см3 подкисленной дистиллированной воды. Раствор каждый раз перемешивают и переносят в мерную колбу или коническую колбу вместимостью 50 см3. Нейтрализуют избыточную кислотность раствором гидроокиси натрия до рН=2 и добавляют затем 25,0см3 реакционной смеси.
Измеряют оптическую плотность и из полученного результата вычитают оптическую плотность холостой пробы. Холостую пробу получают, обрабатывая аналогично надсернокислым аммонием 25,0 см3 подкисленной дистиллированной воды.
По градуировочному графику или по уравнению регрессии находят (непосредственно или с учётом разбавления, если анализировалась проба объёмом менее 25,0 см3) массовую концентрацию алюминия в воде мг/дм3. За окончательный результат анализа принимают среднее арифметическое двух параллельных определений.
Относительное расхождение между результатами параллельных проб (∆r) в процентах вычисляют по формуле:
где С1 – больший
результат из двух параллельных определений,
мг/дм3;
Результаты анализа представлены в таблице.
Таблица - 3.3 Результаты анализа
№ пробы |
Длина волны для алюминия, нм. |
Оптическая плотность |
Концентрация алюминия (К=1,46), мг/дм3. |
1(х) |
540 |
0,409 |
- |
2(к) |
540 |
0,764 |
0,518 |
3(к) |
540 |
0,777 |
0,537 |
4 |
540 |
0,711 |
0,440 |
5 |
540 |
0,823 |
0,604 |
6 |
540 |
0,715 |
0,446 |
7 |
540 |
0,780 |
0,541 |
Вывод: Результат считают удовлетворительным, если ∆r не превышает допускаемых значений относительного расхождения, равных с доверительной вероятностью Р = 0,95 70 % (2,77 · 25 %) при концентрации алюминия менее 0,15 - 0,1 мг/дм3 и не выше 28 % (2,77 · 10 %) при концентрации 0,2 мг/дм3 и более (2,77 - значение стьюдентизированного размаха при Р = 0,95 и числе параллельных определений 2).
3.1.3 Фотометрический метод определения массовой концентрации мышьяка (ГОСТ 4152-89)
Метод основан на восстановлении с помощью водорода в момент его выделения всех присутствующих форм мышьяка до летучего мышьяковистого водорода (арсина) и взаимодействии арсена с раствором йода с образование арсенат-иона, который определяется фотометрически в виде мышьяково-молибденовой сини при длине волны 840 или 750 нм.
В пробирку 6 с предварительно собранного прибора наливают 6,0 см3 рабочего градуировочного раствора йода с молярной концентрацией 0,0005 моль/дм3 и опускают в раствор трубочку 5, конец которой должен доходить почти до дна пробирки. Другой конец трубочки 5 уже заранее должен быть тщательно соединён с трубочкой 4, которая заполнена ватой, пропитанной уксусно-кислым свинцом. В реакционный сосуд 1 помещают 100 см3 пробы воды, добавляют 10 см3 концентрированной серной кислоты, 6 см3 раствора йодистого калия, 1 см3 хлористого олова, смесь перемешивают, сразу же вносят в сосуд 5 г гранулированного цинка и быстро герметизируют сосуд, вставляя резиновую пробку 2 и соединяя сосуд с остальной частью прибора.
Реакцию восстановления мышьяка и поглощения арсина проводят в течение 60 мин, после чего пробирку 6 с образовавшимся в поглотительном растворе арсенатом отсоединяют от прибора, переносят раствор в пробирку с пришлифованной пробкой , обмывают конец трубочки 5 и пробирку 6 небольшой порцией дистиллированной воды, сливая её в ту же пробирку. Прибавляют 2,0 см3 смешанного реактива, доводят раствор дистиллированной водой до 10 см3, тщательно перемешивают раствор и опускают пробирку в кипящую водяную баню на 5 мин . После охлаждения пробирки под струёй холодной воды о комнатной температуры переносят раствор в кювету с расстоянием между гранями 20 мм и измеряют его оптическую плотность при 840 или 750 нм относительно раствора холостого опыта, проведённого по той же схеме с 100 см3 дистиллированной воды.
Реакция Зангер-Блека:
AlO2-
AlO3 3- + H+ AsH3 + H2O
AlO4 3-
AsO4 3- + Sn2 + 4H+ AsO2- + Sn4+ + 2H2O
AsH3 + Ox AsO43-
AsO43- + NH4MoO4 H4[As(MoO7)6]3-
Pb(CH3COO)2 + H2S Pb + 2CH3COOH
Относительное расхождение между результатами параллельных проб (∆r) в процентах вычисляют по формуле:
Где С1- больший результат из двух параллельных определений, мг/дм3
С2 – меньший результат из двух параллельных определений, мг/дм3
Результаты анализа
Проба1 =0,006 мг/см3
Проба2 =0,006 мг/см3
Контр. проба = 0,267 мг/ см3
Вывод: Результаты считают удовлетворительными, если ∆r не превышает допускаемых значений относительного расхождения, равных с доверительной вероятностью Р = 0,95 50 % (2,77 × 18 %) при концентрации мышьяка 0,01 - 0,035 мг/дм3; 28 % (2,77 × 10 %) при концентрации мышьяка 0,04 - 0,06 мг/дм3 и 16 % (2,77 × 6 %) при концентрации мышьяка выше 0,06 мг/дм3 (2,77 - значение стьюдентизированного размаха при Р = 0,95 и числе параллельных определений 2).
3.3.5 Фотометрический метод с применением 4-аминоантипирина
Летучие фенолы, кроме n-кренола и других фенолов, замещенных в пара-положении, реагирует с 4-аминоантипирином /1-фенил-2, 3-диметил-4-аминопиразол/ при рН=10,0+0,2 в присутствии феррoцианида калия с образованием красных антихриновых красителей, которые экстрагируют хлороформом. Этим методом можно определять концентрации фенолов от сотых долей миллиграмма до целых миллиграммов в 1 л.
Метающие влияния
рН=9,8(строго!)
Определению
летучих фенолов мешает
Значение рН
является важным фактором при
определении фенолов с
Ход определения
Перегоняют отмеренное количество пробы / не более 500 мл / после прибавления 5 мл 10%-ного раствора сульфата меди и 10 мл 10%-ного раствора фосфорной кислоты / см. "Фенолы. Определение с п-нитроанилином"/. Консервирование пробы следует нейтролизовать. Объем дистиллята должен быть тот же, что и объем пробы, взятой для перегонки. Объем смеси в перегоной колбе не должен быть меньше 50 мл.
Аликвотную часть ( или все количество дистиллята, если содержание фенола не превышает 0,05 мг) разбавляет дистилированной водой до 500 мл и переливабт в стакан емкостью 1 л. В другой стакан отмеривают 500 мл дистилированной воды для холостого опыта.
В оба стакана
прибавляют по 10 мл раствора хлорида
аммония и концентрированным
раствором аммиака доводят
Смесь перемешивают
и прибавляют 3,00 мл раствора 4-аминоантипирина.
После повторного
Информация о работе Фотомерический метод определения фенолов с применением 4-аминоантипирина