Техническая диагностика газопроводов

Автор работы: Пользователь скрыл имя, 08 Апреля 2015 в 15:50, курсовая работа

Описание работы

Одной из важнейших проблем трубопроводного транспорта является сохранение нормального состояния линейной части промысловых и магистральных трубопроводов. Подземные трубопроводы, работающие при нормальных режимах, сохраняются, по крайней мере, несколько десятков лет. Так, например, некоторые трубопроводы, проработавшие около двадцати лет, полностью сохранились и не требуют ремонта. Этому способствовало то большое внимание, которое уделяется систематическому контролю состояния подземных и надземных трубопроводов и своевременная ликвидация появляющихся дефектов.

Содержание работы

Введения
1. Объект диагностирования
1.1 Неисправности и дефекты объекта диагностирования
2. Методы диагностирования
2.1 Оределения размеров сварочных труб
2.2 Определения нарушения сплошности сварных труб
2.3 Определения физико-механических свойств сварочных труб
3. Порядок проведения работ по диагностированию
3.1 Организация пропуска внутритрубных снарядов
4 Технические средства диагностирования
4.1 Очистные скребки типа СКР1 и СКР1-1
4.2 Профилемер “Калипер
4.3 Магнитный дефектоскоп
Заключения
Список литературы

Файлы: 1 файл

Тех диагностика.doc

— 237.50 Кб (Скачать файл)

И так мы можем сказать, что весь контроль должен сводиться к обеспечению нормальных условий освещенности контролируемого объекта, установлению требуемого режима работы и взаимного расположения объекта контроля и аппаратуры.

Акустический метод основан на индикации акустических колебаний, возбуждаемых в контролируемом объекте, грунте или окружающей газовой среде (воздухе) при вытекании пробного газа или жидкости через сквозные дефекты. Молекулы пробного вещества взаимодействуют со стенками сквозных дефектов объекта и генерируют в нем колебания звукового и ультразвукового диапазонов. Эти колебания фиксируются с помощью устанавливаемого на поверхности объекта ультразвукового или виброакустического датчика течеискателя, преобразовывающего ультразвуковые колебания в электрические сигналы, передаваемые далее на показывающие и записывающие устройства течеискателя. В настоящее времакустические методы течеискания занимают важнейшее место в контроле герметичности трубопроводов.

Генерация вибраций грунта или акустических колебаний окружающей газовой среды при протечке газа или жидкости через течи обусловлена превращением кинетической энергии струи в энергию упругих колебаний. Частотный спектр этих колебаний широк: от десятков герц до сотен килогерц. Он зависит от вида и размеров течи, параметров протекающего через нее вещества (плотности, температуры, давления и др.).

Принцип действия таких течеискателей основан на преобразовании вибрации грунта или колебаний газовой среды (воздуха) в электрические сигналы, частотной и амплитудной селекции этих сигналов. Непосредственного контакта датчика с объектом при этом не требуется. Например, в переносном акустическом искателе утечек в подземных трубопроводах «AI4CT-4» датчик в процессе контроля последовательно устанавливается на грунт вдоль трассы.

Контроль акустическим методом не требует применения специальных пробных веществ и высокой квалификации исполнителей. Недостатком метода является относительно низкая чувствительность и влияние посторонних шумов различного происхождения.

Магнитный метод заключается в измерении потоков рассеяния дефектов контролируемого участка трубопровода, намагниченного постоянным магнитным полем. Причиной намагничивания считаются постоянные токи, существующие в молекулах и атомах ферромагнитного вещества. Магнитные характеристики таких материалов являются информативными параметрами, так как зависят от их физико-механических свойств, химического состава, вида механической и термической обработки, а также от размеров и сплошности изделий.

По способу получения первичной информации различают следующие методы магнитного контроля:

• магнитопорошковый (МП), основанный на регистрации магнитных полей рассеяния над дефектами с использованием в качестве индикатора ферромагнитного порошка или магнитной суспензии;

• магнитографический (МГ), основанный на регистрации магнитных полей рассеяния с использованием в качестве индикатора ферромагнитной пленки;

• эффекта Холла (ЭХ), основанный на регистрации магнитных полей датчиками Холла;

• индукционный (И), основанный на регистрации магнитных полей рассеяния по величине или фазе индуктируемой ЭДС;

• пондеромоторный (ПМ), основанный на регистрации силы отрыва (притяжения) постоянного магнита или сердечника электромагнита от контролируемого объекта;

• магниторезисторный (MP), основанный на регистрации магнитных полей рассеяния магниторезисторами;

• магнитооптический (МП), основанный на визуализации доменной структуры материала с помощью феррит-гранатовой пленки с зеркальной подложкой.

 

2.2 Определение нарушения сплошности сварных труб

 

На промысловые трубопроводы воздействуют механические нагрузки: смятие, растяжение и сжатие стенок. Эти нагрузки могут действовать одновременно, что приводит к нарушению герметичности и разрыву сварных стыков и стенок труб. Нарушение сплошности промысловых трубопроводов может возникать из-за коррозионного проржавления и недоброкачественного заводского проката.

Для определения сплошности существует таблица 5. «Оценка применяемости видов НК и Д при определении нарушения сплошности сварных труб».

 

 

 

 

Таблица №5

Объект контроля

Вид неразрушающего контроля и диагностики.

Трубы сварные

диаметром, мм:

156-1000

(t = 3...300)

t-толщина

стенки трубы.

Вихретоковый

Магнитный

Тепловой

Оптический

Радиоволновой

Радиационный

Акустический

5

5

5

5

4

0

4


 

 

 

По оценкам таблицы 2 для определения нарушения сплошности сварных труб мы можем выделить шесть методов неразрушающего контроля и диагностики: оптический, акустический, магнитный, вихретоковый, тепловой, радиоволновой.

Вихретоковый метод контроля заключается в следующем: контролируемая труба помещается в магнитное поле катушки, питаемой от генератора переменного тока. В металле возникают вихревые токи, которые текут по замкнутым круговым путям и создают собственное магнитное поле, взаимодействующее с первоначальным полем катушки, или воздействующее на специальную измерительную катушку. Величина и фаза вихревых токов характеризует качество трубы, однако их величину непосредственно определить нельзя. О величине вихревых токов судят по изменению напряжения тока, мощности или комплексного сопротивления в возбуждающей или измерительной катушках.

Задачей теоретической разработки метода вихревых токов является установление математической связи между физическими свойствами испытуемого объекта, его геометрическими размерами и величинами электрических параметров подносимого контура.

В настоящее время разработано большое количество различных конструкций преобразователей, которые принято классифицировать по следующим признакам:

• по типу преобразования параметров объекта контроля в выходной сигнал вихретокового преобразователя;

• по способу соединения катушек преобразователя;

• по расположению преобразователя относительно объекта контроля.

По первому признаку преобразователи разделяют на параметрические и трансформаторные. Параметрический преобразователь имеет лишь одну индуктивную возбуждающую катушку, активное и реактивное сопротивление которой зависит отпараметров объекта и условий его контроля. Трансформаторный вихретоковый преобразователь содержит не менее двух индуктивно связанных катушек (возбуждающих и измерительных) и преобразует контролируемый параметр в ЭДС измерительной катушки.

По второму признаку вихретоковые преобразователи делят на абсолютные и дифференциальные. Абсолютным называют вихретоковый преобразователь, сигнал которого определяется абсолютным значением параметра объекта контроля, дифференциальным - сигнал которого определяется приращением параметра объекта контроля.

В зависимости от расположения относительно объекта контроля преобразователи разделяют на проходные, накладные и комбинированные. В свою очередь проходные разделяют на наружные, внутренние, погружные и экранные.

Помимо обнаружения дефектов вихретоковьий вид неразрушающего контроля широко применяют в целях структуроскопии для контроля физико-механических свойств объектов, связанных со структурой, химическим составом и внутренними напряжениями их материалов. Кроме того, вихретоковые приборы и установки используют для контроля размеров объекта, параметров его вибрации, обнаружения электропроводящих объектов (металлоискатели) и других целей.

Магнитный метод описан выше.

Тепловой вид неразрушающего контроля (по ГОСТ 23483—79) основан на взаимодействии теплового поля объекта с термометрическим чувствительным элементом (термопарой, фоторезистором, термоиндикаторами и т.п.) и преобразовании параметров поля (интенсивности, температурного градиента, контраста, лучистостей и др.) в параметры электрического или другого сигнала и передаче его на регистрирующий прибор. Температурное поле поверхности определяется особенностями процессов теплопередачи, зависящими в свою очередь от конструктивного исполнения контролируемого объекта и наличия внешних и внутренних дефектов. Основной характеристикой теплового поля, используемой в качестве индикатора дефектности, является величина локального температурного градиента.

Для контроля применяют пассивные и активные методы. При активном контроле объект подвергают воздействию от внешнего источника энергии, при пассивном такое воздействие отсутствует. Пассивный контроль в общем случае предназначен: для контроля теплового режима объектов; для обнаружения отклонений от заданной формы и геометрических размеров объектов контроля. В свою очередь активный контроль предназначен для обнаружения дефектов типа нарушения сплошности (трещин, пористости, расслоений, инородных включений), а также изменений в структуре и физико-химических свойствах объекта контроля (неоднородность структуры, теплопроводность структуры, теплоемкость и коэффициент излучения).

В зависимости от способа получения информации различают также контактные и бесконтактные способы. В процессе технической диагностики чаще всего применяют бесконтактные способы, обладающие высокой оперативностью и минимальной трудоемкостью. Информация, получаемая бесконтактными тепловыми методами контроля, переносится оптическими электромагнитными излучениями в инфракрасной области. Интенсивность и частота инфракрасного излучения определяется энергией колебательного и вращательного движения молекул и атомов объекта и зависит от его температуры. Основным способом генерирования инфракрасного излучения является нагрев объекта, поэтому это излучение чаще называют тепловым.

Оптический метод также приведён и описан выше.

Радиоволновой вид контроля основан на способности радиоволновых колебаний распространяться с малыми потерям и в однородной упругой среде отражаться от нарушений сплошности этой среды. Существуют два основных метода контроля - метод сквозного прозвучивания и метод отражения.

Для радиоволнового метода контроля используются упругие колебания высокой частоты в диапазоне 1 25 МГц. Однако отдельные установки работают на низких (25 кГц) и на весьма высоких (200 МГц) частотах.

Акустический вид неразрушающего контроля представлен выше в определение размеров сварных труб.

 

2.3 Определение физико-механических свойств сварных труб

 

Усталостное разрушение промысловых трубопроводов, обусловливается необратимым изменением физико-механических свойств и снижением характеристик трещиностойкости сварных соединений и основного металла. Усталостные трещины, развивающиеся при этом в результате циклических температурных напряжений и пульсации рабочего давления (физико-механические свойства), возникают в зоне технологических дефектов сварных швов (непровар корня шва, поры, шлаки и т.д.) и далее переходят на основной металл труб. В связи с тем, что стенки трубопроводов вследствие их упругой деформации аккумулируют большое количество энергии перекачиваемого продукта, возникновение усталостных трещин в условиях пониженных температур может вызвать квазихрупкие или хрупкие разрушения большой протяженности.

Для определения этих свойств существует таблица 3. «Оценка применяемости видов НК и Д при определении физико-механических свойств сварных труб».

 

 

 

Объект контроля

Вид неразрушающего контроля и диагностики.

Трубы сварные

диаметром,

мм:

156-1000

(t = 3...300)

t-толщина

стенки

трубы.

Вихретоковый

Магнитный

Тепловой

Оптический

Радиоволнового

Радиационный

Акустический

3

4

4

0

0

3

5


 

 

 

По оценкам таблицы 3 для определения физико-механических свойств сварных труб мы можем выделить три метода неразрушающего контроля и диагностики: акустический, магнитный, тепловой.

Все эти три метода уже были приведены выше, но остался не описанным радиационный метод.

Радиационный неразрушающий контроль основан на использовании основных свойств радиоактивных излучений. Эти лучи неодинаково проникают через различные материалы и поглощаются в них в зависимости от толщины, рода материала и энергии излучения. Излучения бывают двух типов: так называемые жесткие излучения, обладающие большей энергией, и мягкие излучения, обладающие малой энергией. Жёсткие излучения в меньшей степени поглощаются веществом, через которые они проходят, а мягкие они сильней и они не могут проникать через толстые слои вещества.

Информация о работе Техническая диагностика газопроводов