Симметрия

Автор работы: Пользователь скрыл имя, 10 Ноября 2009 в 19:08, Не определен

Описание работы

физики своя форма приложения общего научного метода, свои принципы познания. Они позволяют увидеть странный мир симметрий, начинающийся с простейшей геометрической правильности и простирающийся до свойств элементарных частиц. Принципы симметрии лежат в основе самых сложных, самых современных физических теорий, более того – в основе законов природы. Главное направление современной физики – поиск симметрий и единства законов природы

Файлы: 1 файл

work.doc

— 723.00 Кб (Скачать файл)

       В механике и электродинамике обратимость  времени прямо видна из уравнений; глубоко проанализировав другие явления, в том числе и биологические, физики пришли к заключению, что  речь идет о всеобъемлющем свойстве Вселенной. Но оказалось, что в «слабом взаимодействии» элементарных частиц некоторые симметрии нарушаются, в том числе и обратимость времени. Кроме того симметрии нарушаются на космологических расстояниях и временах. Так как Вселенная двадцать миллиардов лет назад была сверхплотной, так как она с тех пор расширяется, существует слабое нарушение временной однородности и обратимости, но это практически не влияет на обычные земные эксперименты.

       Симметрии, о которых мы рассказали, на научном  языке формулируются так: все законы природы инвариантны относительно операции переноса в пространстве и времени и относительно поворотов в пространстве. С очень большой точностью. 
 
 
 

6. Зеркальная симметрия.

       Если  мы закрутим волчок налево, он будет  кружиться и двигаться так же, как закрученный направо, только фигуры движения правого волчка будут зеркальным отражением фигур левого. Чтобы проверить зеркальную симметрию, можно построить такую установку, в которой все детали и их расположения будут зеркально симметричны прежним. Если обе установки будут давать одинаковый результат, значит явление зеркально симметрично. Это требование соблюдается для зеркально ассиметричных молекул: если они образуются в равных условиях, число левых молекул равно числу правых.

       В истории физики был удивительных случай, когда открытие двух зеркальных форм вещества было сделано с помощью микробов! Основоположник современной микробиологии Луи Пастер предположил, что искусственная кислота состоит из двух зеркально-симметричных форм, одна поворачивает направление плотности поляризации направо, а другая – налево. В результате направление не меняется. 
 

7. Повороты в пространстве  – времени.

       Замечательное свойство механических движений было обнаружено Галилеем: они одинаковы  в неподвижной системе координат и в равномерно движущейся на Земле и в летящем самолете. В 1924 году нидерландский физик Хендрик Антон Лоренц обнаружил, что это свойство существует и в электродинамических явлениях. Попутно выяснилось важное обстоятельство: скорость заряженных тел не может превысить скорости света. Анри Пуанкари показал, что результаты Лоренца означают инвариантность уравнений электродинамики относительно поворотов в четырехмерном пространстве, где кроме трех координат есть еще одна – временная. Эйнштейн обнаружил, что эта симметрия всеобщая, что все явления природы не изменяются при таких поворотах.

       Как проявляется эта симметрия в  физических законах?

       Все физические величины различаются по тому, как они изменяются при повороте. Совсем не изменяются скаляры; другие – векторы – ведут себя при поворотах как отрезок, проведенный из начала координат в какую-нибудь точку пространства; как произведение двух векторов изменяются тензоры; спиноры – это величины, из которых можно образовать квадратичную комбинацию, изменяющуюся как вектор, или скалярную, не изменяющуюся при поворотах.

       Симметрия требует, чтобы во всех слагаемых  уравнениях стояли величины, одинаково  изменяющиеся при поворотах. Так  же как нельзя сравнивать время и  длину, массу и скорость, невозможно приравнять скаляр к вектору – уравнение нарушится при повороте.

       Суть  симметрии именно в этом разделении величин на скаляры, векторы, тензоры, спиноры…

       Все симметрии, которые мы рассмотрели, - зеркальная, однородность и изотропность пространства и времени – в  начале 20 века были объединены теорией относительности в единую симметрию четырехмерного пространства – времени.

       Все явления природы инвариантны  относительно сдвигов, поворотов и  отражении в этом пространстве. 
 

8. Симметрия физических  явлений.

       Кроме симметрии пространства – времени существует еще множество других симметрий, управляющих физическими явлениями, определяющих свойства элементарных частиц и их взаимодействий. Мы увидим, что каждой симметрии обязательно соответствует свой закон сохранения, который выполняется с такой же точностью, как и сама симметрия.

       Когда в 30-х годах изучался радиоактивный  распад, оказалось, что энергия вылетающих при распаде электронов меньше разности энергий ядер до и после распада. Физики предположили, что вместе с  электронами вылетает нейтральная частица – нейтрино, унося излишек энергии. Существование нейтрино было затем доказано на опыте по его непосредственному действию на вещество. Энергия сохраняется с той же точностью, с какой соблюдается однородность времени.

       И так, каждой симметрии соответствует свой закон сохранения. И наоборот, когда какая-либо величина остается неизменной, значит существует симметрия, обеспечивающая сохранение этой величины. Неудивительно, что законы сохранения энергии, импульса, углового момента соблюдаются во всех явлениях природы, они есть следствие такого свойства нашего мира, как симметрия пространства и времени. 
 

9. Нарушение зеркальной  симметрии.

       Оказалось, что заряженный К-мезон распадается двумя способами: на два или три пи-мезона, а зеркальная симметрия запрещает ему распадаться обоими способами.

       Зеркальная  симметрия связана с законом  сохранения – сохраняется величина, которая называется четностью. Что  это такое?

       Свойства  частиц не должны изменятся при зеркальном отражении, но волновая функция может  изменить знак. Когда она не изменяет знака, состояние называется четным, а когда изменяет – нечетным. Значит, если существует зеркальная симметрия, каждая частица имеет определенную четность.

       Примерно  в то же время американские  физики изучали В-распад кобальта, при котором из ядер вылетаю электроны  антинейтрино. Оказалось, что электроны вылетают преимущественно под тупыми углами к направлению магнитного поля, в которое был помещен кобальт. По закону зеркальной симметрии они должны были одинаково часто вылетать, как под тупыми углами, так и под острыми.

       Смятение  физиков было таково, что они усомнились и в других свойствах симметрии  пространства. Тогда Лев Давыдович  Ландау и независимо Ли Цзундао и  Янг Чтельнин предположили, что участвующие  в В-распаде электроны, нейтрино, нуклоны зеркально асимметричны и, чтобы восстановить симметрию, нужно перейти к античастицам. Казалось, что выход найден – асимметрия вылета объяснялась асимметрией участвующих частиц. Тогда асимметрия слабого взаимодействия не означала бы нарушения зеркальной симметрии пространства. 
 

10. Зарядово-зеркальная  симметрия.

       Для всех явлений природы, кроме слабых взаимодействий, существует еще зарядовая  симметрия: законы природы не изменяются, если все электрические заряды заменить на обратные.

       Были предсказаны и обнаружены античастицы – позитрон, антипротон, антинейтрон и т.д. Из них можно составить ядро антиэлемента. Если к такому ядру, заряженному отрицательно, прибавить позитроны, получится антиатом, из антиатомов – антивещество, с теми же свойствами, что и обычное вещество.

       После опытов, о которых мы только же рассказали, зарядовую симметрию пришлось уточнить. В место ней существует Зарядово-зеркальная симметрия: законы природы не изменяются, если все заряды в мире заменить на обратные, и одновременно произвести зеркальное отражение. Антимир – зеркальное отражение нашего мира.

       Большинство астрофизиков считают, что антимиров  нет. Дело в том, что на границах вещества и антивещества должна происходить  аннигиляция электронов и позитронов – они превратились бы в пары квантов с энергией каждого 0,5 МэВ. Таких квантов должно было быть очень много во Вселенной, их нет.

       Зарядово-зеркальная симметрия тоже оказалась неточной: в опытах по распаду все того же К-мезона было обнаружено принципиально  важное нарушение закона Зарядово-зеркальной симметрии. Означает ли это асимметрию пространства, пока не известно. 
 

11. Спонтанное нарушение  симметрии.

       Симметричные  уравнения могут иметь ассиметричные  решения. Теория элементарных частиц предполагает, что максимальная симметрия, царствует на сверхмалых расстояниях, а на больших возникает спонтанное нарушение, которое может сильно замаскировать симметрию. Симметрию не всегда можно легко увидеть. Ее примеры встречаются на каждом шагу: капля воды, лежащая на столе, - пример такого нарушения; было бы более симметрично, если вода размазалась бы по столу тонким слоем. Кристаллические решетки твердых тел – нарушение разных симметрий; однородное хаотичное расположение атомов, которое возникает при высокой температуре, полнее отражает симметрию, однородность и изотропность пространства. Но при достаточно низких температурах устойчиво ассиметричное состояние твердого тела – кристаллическая решетка. 
 

12. Внутренняя симметрия.

       Нам предстоит обсудить еще один тип  симметрий, также оплодотворяющий современную физику, как и пространственные.

       Существуют  «внутренние симметрии», которые  означают неизменность явлений не при  отражении, сдвигов или поворотах  пространства, а при изменении  некоторых внутренних свойств полей  или частиц. Так сильные взаимодействия слабо зависят от заряда участвующих частиц, это свойство позволяет установить «изотопическую симметрию сильных взаимодействий» - пример внутренней симметрии.

       Каждая  симметрия (внутренняя) так же как  и пространственная приводит к своему закону сохранения и наоборот – когда какая-либо величина сохраняется во многих явлениях, это, как правило, означает, что существует симметрия, обеспечивающая сохранение. 
 

13. Калибровочная инвариантность.

       Калибровочная инвариантность или калибровочная  симметрия, означает, что никакие электродинамические явления не изменяются при тех изменениях векторного потенциала, которые сохраняют значения электрического и магнитного полей в каждой точке пространства-времени. Следствие этого свойства электродинамики выполняется на опыте с большой точностью. Какие же изменения вектора потенциала допустимы. Самое простое – добавление к векторному потенциалу постоянного слагаемого, независящего от координат. От этого разности значений векторного потенциала не изменяются и, значит напряженности будут прежними. Но, оказывается, векторный потенциал допускает гораздо больший произвол – к нему можно добавить определенным образом подобранную функцию от координат и времени без того, чтобы изменить электрические и магнитные поля.

       Калибровочная инвариантность должна дополняться в каждой точке пространства, это локальная симметрия.

       Калибровочная инвариантность обеспечивает сохранение полного заряда не только во всем пространстве, но  и в каждой точке. Заряды могут  только перелетать, они не могут исчезнуть в одной области пространства и появиться в другой без того, чтобы возник электрический ток, переносящий заряды.

       Хорошо  проверенный на опыте закон кулона тоже есть следствие калибровочной  инвариантности, даже малое нарушение  этого требования изменило бы закон распространения длинных радиоволн, что противоречило бы нашему повседневному опыту. Требование калибровочной симметрии было определяющем при создании квантовой электродинамике, в которой законы квантовой механики применяются не только к частицам, но и к самому электромагнитному полю.

       Понимание калибровочной инвариантности особенно обогатилось после создания квантовой  механики. Волновые функции заряженных частиц изменяются при калибровочном  изменении векторного потенциала таким  образом, чтобы оставались неизменными уравнения движения всей системы – полей и взаимодействующих с ними частиц. Такая обобщенная калибровочная инвариантность приводит к громадному количеству наблюдаемых следствий. 
 

14. Изотопическая симметрия.

       Один  из простых примеров внутренней симметрии – «изотопическая инвариантность сильных взаимодействий» - подтвердился многочисленными экспериментами и оказался очень важным для построения теории ядра.

       Введем  новое понятие – изотопический  спин, и пусть его свойства напоминают обычный спин, тогда изоспин1 будет иметь три проекции, а изоспин1/2 – две. У нуклона два изотопических состояния, следовательно, его изоспин равен ½, а протон и нейтрон соответствуют двум проекциям: ½ и ½. У Пи-мезона изотопический спин1. Положительный, отрицательный и нейтральный Пи-мезоны соответствуют трем проекциям изоспина1. Таким образом сильные взаимодействия обладают свойством изотопической инвариантности, они не зависят от того, в каком изотопическом состоянии находятся взаимодействующие частицы.

Информация о работе Симметрия