Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 20:20, отчет по практике
1. Ознакомление студентов с процессами бурения нефтяных и газовых скважин, добычи нефти и газа и обустройством нефтяного месторождения.
2. Ознакомление с основным оборудованием, применяемом при бурении и эксплуатации нефтяных и газовых скважин.
3. Ознакомление с основным звеном нефтедобывающей промышленности – нефтяным промыслом и его производственно-хозяйственной деятельностью.
4. Получение определенных практических знаний, способствующих лучшему усвоению теоретического материала в процессе дальнейшего обучения по специальности.
5. Приобретение первого опыта работы общения в производственном коллективе.
2. Технология бурения скважины
1. Введение
2. Технология бурения скважины
2.1. Породоразрушающий инструмент
2.2. Устройство буровой установки
3. Вскрытие и освоение нефтяного пласта
3.1.1. Пулевая перфорация
3.1.2. Торпедная перфорация
3.1.3. Кумулятивная перфорация
3.1.4. Гидропескоструйная перфорация
3.1.5. Сверлящая перфорация
3.2. Освоение нефтяных скважин
3.2.1. Замена в стволе скважины жидкости большой плотности жидкость меньшей плотности
3.2.2. Снижение давления на пласт компрессором
3.2.3. Свабирование
3.2.4. Имплозия
4. Подъем нефти на дневную поверхность
4.1. Фонтанный способ добычи нефти.
4.1.1. Баланс пластовой энергии
4.1.2. Осложнения при работе фонтанной скважины.
4.1.3. Оборудование фонтанной скважины.
4.1.4. Насосно-компрессорные трубы.
4.1.5. Пакеры, якоря
4.1.6. Фонтанная арматура
4.2. Добыча нефти установками штанговых насосов
4.2.1.Привод
4.2.2. Конструкция штангового насоса
4.2.3. Эксплуатация скважин, оборудованных установками штанговых глубинных насосов (УШГН)
4.3.Добыча нефти бесштанговыми скважинными насосами
4.4. Установки электроцентробежных насосов
5. Искусственное воздействие на пласт путем закачки воды
5.1.Теоретические основы поддержания пластового давления
5.2.Законтурное заводнение
5.3.Внутриконтурное заводнение
5.4.Характеристика закачиваемых в пласт вод
5.5.Технологическое схемы ППД
5.6.Наземные кустовые насосные станции
5.7. Подземные кустовые насосные станции
5.8. Очистка сточных вод
5.9. Конструкция нагнетательных скважин
5.10. Освоение нагнетательных скважин
5.11. Закачка газа в пласт
5.12.Закачка теплоносителей
5.13. Закачка горячей воды
5.14. Закачка пара
5.15.Создание движущегося очага внутрипластового горения
5.16. Закачка углекислоты
5.17. Оборудование для осуществления технологий
5.18.Применение мицеллярных растворов
5.19.Вытеснение нефти растворами полимеров
5.20. Применение углеводородных растворителей
5.21.Применение щелочного заводнения
5.22.Применение поверхностно-активных веществ
6. Ремонт нефтяных скважин.
6.1. Общие сведения о текущем ремонте скважины.
6.2.Технология капитального подземного ремонта скважин.
6.2.1 Обследование и исследование скважин перед капитальным ремонтом.
6.2.2 Технология ремонта эксплуатационной колонны.
6.2.3. Технология изоляционных работ по устранению или ограничению водопритоков.
6.2.4. Изоляция притока подошвенной воды.
6.2.5. Ловильные работы в скважине.
6.2.6. Извлечение упавших труб.
6.2.7. Извлечение установки ЭЦН.
6.2.8. Испытание колонны на герметичность.
6.2.9. Зарезка второго ствола.
6.2.10. Ликвидация скважин.
6.3. Механизмы и оборудование для ремонтных работ.
6.3.1. Стационарные и передвижные грузоподъемные сооружения.
6.3.2. Ловильный инструмент.
7. Сбор и подготовка нефти.
7.1. Групповая замерная установка.
7.2. Установка комплексной подготовки нефти.
8. НГДУ «Чекмагушнефть»
9. Заключение
Из резервуара вода поступает в напорный фильтр. Затем в трубопровод подают ингибитор коррозии, и насосами вода откачивается на КНС.
Для накопления и отстоя воды применяют вертикальные стальные резервуары.
На внутреннюю поверхность
резервуаров наносятся
5.9. Конструкция нагнетательных скважин
В большинстве своем
Существующие конструкции нагнетательных скважин предусматривают закачку воды через насосно-компрессорные трубы, спускаемые с пакером и якорем.
Надпакерное пространство следует
заполнить нейтральной к
Забой должен иметь достаточный по толщине фильтр, обеспечивающий закачку запланированного объема воды, зумпф, глубиной не менее 20 м для накопления механических взвесей.
Целесообразно применение вставных (сменных) фильтров, которые могут периодически подниматься из скважин и очищаться.
Устьевая арматура нагнетательной скважины предназначена для подачи и регулирования объема воды в скважину, проведения различных технологических операций промывок, освоения, обработок и т.д.
Наиболее распространена на месторождениях восточных районов арматура типа 1АНЛ-60-200.
Арматура состоит из колонного
фланца, устанавливаемого на обсадную
колонну, крестовины, применяемой для
сообщения с затрубным
Пакер применяется для
разобщения отдельных участков ствола
скважины.
Получили широкое применение пакеры механического
или гидромеханического действия, рассчитанные
на перепад давления до70 Мпа. Пакер спускается
в скважину одновременно с якорем.
Назначение и конструкция пакера и якоря принципиально не отличаются от применяемых при фонтанной эксплуатации скважин.
5.10. Освоение нагнетательных скважин
Освоение нагнетательных скважин – комплекс мер, связанных с пуском их в работу.
В большинстве своем – это меры, проводимые для эксплуатационных скважин: очистка призабойной зоны пласта от привнесенного в процессе бурения глинистого раствора, образование сети трещин. Но для скважин, вводимых под нагнетание из нефтяных, причем проработавших длительное время, возникает ряд специфических трудностей. Рассмотрим некоторые виды освоения.
Свабирование представляет собой наиболее простой и вполне эффективный способ освоения скважин.
Состоит в спуске в скважину поршня с клапаном, открывающимся при движении поршня вниз и закрывающимся при подъеме. При этом поршень поднимает столб жидкости, находящийся над ним, который может достигать сотен метров (по данным БашНИПИнефть – 300 м). В результате происходит резкое снижение давления на пласт и выброс из него с большой скоростью жидкости с механическими взвесями. Эффект может быть усилен за счет применения пакера: перепад в этом случае может достигнуть 500 м.
Однако, при свабировании не исключены случаи возникновения фонтанирования скважины, а также затруднена герметизация устья скважины.
Гидросвабирование – метод чередующихся циклов закачки воды в пласт и ее прекращения с выбросом на поверхность определенной порции жидкости из пласта, содержащей посторонние примеси. Эффективность метода состоит в создании депрессии на пласт путем резкого открытия задвижки на устье скважины.
Кислотная обработка широко
применяется для очистки
Если нефтесодержащие
породы сложены известняками, доломитами,
то для таких пластов
Хлористый кальций и хлористый магний – вещества, хорошо растворимые в воде, углекислый газ растворяется в воде при давлении свыше 7,6 Мпа, или уносится из скважины в газообразном виде.
Терригенные коллекторы (песчаники, алевролиты) подвергаются эффективному воздействию плавиковой кислоты (HF):
Наличие в терригенных коллекторах карбонатов и глин замедляют процесс воздействия плавиковой кислоты, поэтому в этих случаях используют соляной и плавиковой кислоты – глинокислоты (HF – 4%, НСI – 8%). Применяют и другие кислоты.
Освоение скважины после бурения независимо от того, будет эта скважина добывающей или нагнетательной, преследует одну общую цель – очистить призабойную зону пласта от привнесенного в нее в процессе бурения глинистого раствора.
Следует выделить работу по освоению под закачку скважин, ранее работавших как добывающие. Специфика освоения таких скважин состоит в том, что воздействие на них кислотой не приводит к эффекту вследствие надежного покрытия пор продуктивного пласта нефтяной пленкой. Для освоения таких пластов нами предложена технология, базирующая на предварительной закачке в пласт растворителя, его выдержке в течение 2…5 часов и последующей промывке скважины.
5.11. Закачка газа в пласт
Метод может быть эффективен при наличии в продуктивном разрезе глинистых пропластков, пластов, линз, зон, которые при воздействии на них водой набухают, уменьшается проницаемость.
При этом следует иметь в виду следующее: а) энергоемкость закачки газа будет значительно выше из-за его меньшей по сравнению с водой плотностью (в 7…15 раз) и необходимостью создания на устье скважин давления, равного по величине забойному. б) газ – сжимаемое вещество, вследствие сего каждый раз при остановках и ремонтах потребуется сжимать газ, заполняющий скважину до величины Рзаб.
Потребность в суточной закачке газа V может быть определена так:
V = Vн + Vв + Vг
Здесь Vн, Vв, Vг – объемы извлекаемой нефти, воды, газа, приведенные к пластовым условиям. Соответственно за сутки, поскольку существуют различные потери газа (утечки, поглощение), объем закачиваемого газа Vнаг должен быть выше расчетного в n раз: Vнаг=n*V n = 1,5…1,20.
При закачке газа необходим тщательный контроль как за состоянием герметичности наземных газопроводов, так и за равномерным движением газа в пласте. Прорывы газа в добывающие скважины по высокопроницаемым пропласткам наиболее частое осложнение в этой системе.
5.12.Закачка теплоносителей
Известно, что повышение
температуры ведет к снижению
вязкости, а, следовательно, и подвижности
нефти. В этом смысле извлечение нефти
с вязкостью в сотни и тысячи
Мпа-с путем повышения
Следует также иметь ввиду,
что и на вполне благополучных
месторождениях закачка огромных объемов
холодной воды для целей ППД ведет
к постепенному охлаждению пласта,
выпадению парафина в нем, загустению
нефти и снижению ее подвижности.
Это ухудшает процесс нефтеизвлечения,
а в конечном итоге – снижает
нефтеотдачу. Так по находящимся
в эксплуатации
30…40 лет месторождения Зыбза-Глубокий,
Яр, Холмское, Северо-Украинское, текущий
коэффициент нефтеотдачи (КНО) не превышает
0,1.
Для разработки таких месторождений в стране создано научно- производственное объединение «Союзтермнефть».
Опыты, проведенные институтом
«КраснодарНИПИнефтьь», показали, что
при закачке горячей воды коэффициент
нефтеотдачи может быть повышен:
при температуре закачиваемой воды
30оС – до 0,432, при 100оС – до 0,745, при
200оС – до 0,783.
С повышением температуры
уменьшается поверхностное
Установлено, что лучшие
показатели достигаются при закачке
пара КНО –
86,3%, горячей воды – 78,31%, горячего воздуха
– 46,24%.
5.13. Закачка горячей воды
Способ сравнительно легко осуществим. При закачке в пласте формируются две зоны: зона с подающей температурой и зона с первоначальной пластовой температурой. Именно в первой зоне и происходит эффективный процесс вытеснения: снижается вязкость, увеличивается объем нефти и ее подвижность, ослабляются молекулярно-поверхностные силы. Это приводить к увеличению КНО.
Технологические расчеты, связанные
с закачкой горячей воды, ведут
в следующей
Радиус теплового влияния через известное время t определяют по уравнению:
[pic] где а – средний
коэффициент
5.14. Закачка пара
При закачке пара в пласт формируются три зоны: первая зона, насыщенная паром, температура которой зависит от давления в этой зоне; вторая – зона горячего конденсата (воды), в которой та снижается от температуры насыщенного пара до начальной пластовой; третья – зона, не охваченная тепловым воздействием, в которой температуры равна пластовой.
Закачка пара ведет к увеличению
КНО по сравнению с горячей
водой вследствие более низких капиллярных
сил, из-за более высокой температуры
пара, более высокой его
Механизм вытеснения нефти аналогичен вытеснению при закачке горячей воды.
В качестве примера рассмотрим
паротепловое воздействие (ПТВ) на пласт
на месторождении Оха (Сахалин), которое
характеризуется следующими данными:
текущий КНО до ПТВ – 20%, пласты
– сцементированный песок, нефтенасыщенная
толщина 22…36 м, глубина залегания 100…950
м, пористость 27%, проницаемость
– 1500 мД, плотность 0,92…0,95 г/куб.см, вязкость
– 2000 Мпа-с.
В 1968 г. начали ПТВ с расходом пара 2 тыс.т, в течение 8 лет КНО возрос до 52%, добыча нефти увеличилась со 147,4 тыс. т до 250 тыс.т, а объем закачки пара со 156 тыс. т до 750 тыс.т в год.
ПТВ в настоящее время
ведется на месторождениях Катангли
(Сахалин),
Ярегском (Коми), Хорасаны (Азербайджан)
и других.
Эффективность метода доказана.
В настоящее время
На территории СНГ к настоящему времени несколько сот залежей высоковязких нефтей, 50% из них законсервировано. КНО на таких месторождениях не превышает 15%.
5.15.Создание движущегося очага внутрипластового горения
Закачка теплоносителей сопряжена с большими потерями тепла в наземных коммуникациях. Так, в поверхностных паропроводных теряется 0,35…3,5 млн.кДж/сут на каждые 100 м трубопровода, а в скважине – 1,7 млн.кДж/сут на каждые 100 м длины НКТ.
Поэтому более эффективным представляется источник тепла, расположенный непосредственно в пласте. Таким источником является очаг внутрипластового горения.
Метод заключается в следующем.
На забое нагнетательной скважины с помощью горелок различной конструкции создается высокая температура, вызывающая загорание нефти в пласте.
Для поддержания горения в пласт через эту же скважину подают окислитель-воздух или кислородосодержащую смесь в объемах, обеспечивающих горение. Горение нефти вызывает повышение температуры до 400оС и улучшает процесс вытеснения нефти.
Факт горения представлен несколькими зонами, т.е. при внутрипластовом горении (ВГ) действуют одновременно все известные методы воздействия на пласт: горячая вода, пар, растворитель, газы из легких углеводородов.
Физический процесс горения
представляется таким образом. После
поджога в пласте происходит процесс
термической перегонки нефти, продукты
которой – коксоподобные
450…500оС вызывает следующие процессы в
пласте. 1. Переход в газовую фазу легких
компонентов нефти. 2. Расщепление (крекинг)
некоторых углеводородов.
3. Горение коксоподобного остатка. 4. Плавление
парафина и асфальтенов в порах породы.
5. Переход в паровую фазу платсовой воды,
находящейся перед фронтом. 6. Уменьшение
вязкости нефти перед фронтом и смешивание
выделяющихся легких фракций нефти и газов
с основной массой. 7. Конденсация продуктов
перегонки нефти и образование подвижной
зоны повышенной нефтенасыщенности перед
фронтом горения. 8. Образование сухой
выгоревшей массы пористой породы за фронтом
горения.
В пласте образуются несколько зон: I – выгоревшая зона со следами несгоревшей нефти или кокса; II – зона горения, в которой максимальная температура достигает 300…500оС; III – зона испарения, в которой происходит разгонка нефти на фракции и крекинг нефти, пластовая и связанные воды превращаются в пар; IV – зона конденсации, в которой происходит конденсация углеводородов и паров, нефть и вода проталкиваются к добывающим скважинам газами, образовавшимися в результате горения СО2, СО, N; V – зона увеличенной насыщенности; VI – зона увеличенной нефтенасыщенности, в которую перемещается нефть из предыдущих зон, температура в этой зоне близка к первоначальной; VII – невозмущенная зона, в которой пластовая температура остается первоначальной.
Экспериментальные работ
позволили установить следующие
количественные данные: 1) на горение
расходуется до 15% запасов пластовой
нефти; 2) горение ведется при
Например, на залежи Павлона Гора за 66 суток было закачено 600 тыс.куб.м. воздуха.
Материальный баланс процесса ВГ представляется так:
Информация о работе Отчет по производственной практики в НГДУ «Чекмагушнефть»