Контрольная работа по "Материаловедению"

Автор работы: Пользователь скрыл имя, 06 Февраля 2011 в 16:33, контрольная работа

Описание работы

Кристаллическими называются тела, в которых атомы и молекулы расположены в правильном геометрическом порядке, а аморфными (стеклообразными), — в которых атомы и молекулы расположены беспорядочно. Различие в строении кристаллических и аморфных веществ определяет и различия в их свойствах. Так, аморфные вещества химически более активны, чем кристаллические такого же химического состава. Поэтому в качестве активных минеральных добавок к цементам применяют горные породы, имеющие аморфное строение, — диатомиты, трепелы, пемзы, туфы.

Содержание работы

1. Как по своему строению различают твёрдые тела?........................................................2

2. Что такое объемные дефекты?..........................................................................................3

3. Какие свойства имеют монокристаллы, и каковы условия их получения?..................5

4. Каковы отличия дендритной и зональной ликваций; факторы, влияющие на их величину?............................................................................................................................................6

5. С какой целью в технике может использоваться наклеп, и какова природа его образования?.......................................................................................................................................7

6. Что такое первичная и собирательная рекристаллизация?............................................8

7. Как легирующие элементы влияют на структуру сталей?.............................................9

8. Перечислите основные виды термообработки, их назначение и режимы………......10

9. Объясните суть старения и его отличие от отпуска………………………………......12

10 Как влияют примеси в сталях на их свойства?.............................................................14

11.Какие легирующие элементы способствуют повышению прокаливаемости сталей?...............................................................................................................................................15

12. Сопоставьте свойства углеродистых и легированных инструментальных сталей..16

13. Назовите основные легирующие элементы, обеспечивающие сталям высокие антикоррозионные свойства………………………………………………………………………17

14. Какие структуры стали обеспечивают её немагнитные свойства?............................18

15. В каком виде может присутствовать графит в чугунах?............................................19

16. Какие свойства можно получить за счет легирования и термообработки чугунов?.............................................................................................................................................20

17. Как называются основные группы сплавов меди?......................................................21

18. Перечислите деформируемые титановые сплавы и их основные характеристики..22

19. Благодаря каким фазам подвергаются химической обработке высокопрочные магниевые сплавы?...........................................................................................................................24

20. Какова особенность применения бериллия и его сплавов?........................................25

21.Каков механизм дополнительного упрочняющего действия в дисперсно-упрочненных композиционных материалах?................................................................................26

22. Каковы различия между термореактивными и термопластичными материалами?.27

23. Библиографический список…………………………………………………………...28

Файлы: 1 файл

МАТЕР.Д.З готовое.doc

— 196.50 Кб (Скачать файл)

       Отличие отпуска от старения связано прежде всего с особенностями субструктуры мартенсита, а также с поведением углерода в мартенсите закалённой стали.

       Для мартенсита характерно большое число  дефектов кристаллического строения (дислокаций и др.). Атомы углерода быстро диффундируют в решётке мартенсита и образуют на дислокациях сегрегации, а возможно и дисперсные частицы карбида  сразу после закалки или даже в период закалочного охлаждения. В результате закалённая сталь оказывается в состоянии максимального дисперсного твердения или в близком к нему состоянии. Поэтому при выделении из мартенсита дисперсных частиц карбида во время отпуска прочность и твёрдость стали или вообще не повышаются, или достигается лишь незначительное упрочнение. Уменьшение же концентрации углерода в мартенсите при выделении из него карбида является причиной разупрочнения мартенсита. В итоге отпуск сталей, как правило, приводит к снижению твёрдости и прочности с одновременным ростом пластичности и ударной вязкости. Отпуск безуглеродистых железных сплавов, закалённых на мартенсит, может приводить к сильному дисперсионному твердению из-за выделения из пересыщенного раствора дисперсных частиц интерметаллических соединений. Причина упрочнения при этом та же, что и при старении. Термины «отпуск» и «старение» часто используют как синонимы. 
 
 
 
 
 
 
 
 
 
 
 

       10 Как влияют примеси в сталях  на их свойства? 

       Полезные  примеси - кремний и марганец. Кремний, если он содержится в стали в небольшом количестве, особого влияния на ее свойства не оказывает. При повышении содержания кремния значительно улучшаются упругие свойства, магнитопроницаемость, сопротивление коррозии и стойкость против окисления при высоких температурах.

       Марганец, как и кремний, содержится в обыкновенной углеродистой стали в небольшом количестве и особого влияния на ее свойства также не оказывает. Однако марганец образует с железом твердый раствор и несколько повышает твердость и прочность стали, незначительно уменьшая ее пластичность. При высоком содержании марганца сталь приобретает исключительно большую твердость и сопротивление износу.

       Постоянные  примеси, от которых зависит качество стали, - сера и фосфор. Сера является вредной примесью. Она находится в стали главным образом в виде FeS. Это соединение сообщает стали хрупкость при высоких температурах, например при ковке, - свойство, которое называется красноломкостью. Сера увеличивает истираемость стали, понижает сопротивление усталости и уменьшает коррозионную стойкость. В углеродистой стали допускается серы не более 0,06-0,07%. Увеличение хрупкости стали при повышенном содержании серы используется иногда для улучшения обрабатываемости на станках, благодаря чему повышается производительность при обработке.

       Фосфор также является вредной примесью. Он образует с железом соединение Fe3P, которое растворяется в железе. Кристаллы этого химического соединения очень хрупки. Обычно они располагаются по границам зерен стали, резко ослабляя связь между ними, вследствие чего сталь приобретает очень высокую хрупкость в холодном состоянии (хладноломкость). Особенно сказывается отрицательное влияние фосфора при высоком содержании углерода. Обрабатываемость стали фосфор несколько улучшает, так как способствует отделению стружки.

       Газы, присутствующие в стали, образуют химические соединения, в свободном состоянии находятся в порах или в виде твердых растворов — в феррите.

       Кислород и азот дают хрупкие неметаллические включения, снижают вязкость и пластичность стали.

       Водород находится в твердом растворе и значительно увеличивает хрупкость стали, способствует образованию внутренних трещин в хромистых и хромоникелевых сталях (флокены).  
 

       11 Какие легирующие элементы способствуют  повышению прокаливаемости сталей? 

       Ведущая роль легирующих элементов в сталях заключается и в существенном повышении их прокаливаемости. Основными легирующими элементами этой группы сталей являются хром (Cr), марганец (Mn), никель (Ni), молибден (Mo), ванадий (V) и бор (В). Содержание углерода (С) в легированных конструкционных сталях — в пределах 0.25-0.50 %.

       Бор увеличивает прокаливаемость стали, делает сталь чувствительной к перегреву.

       Хром  повышает твердость, прочность и износоустойчивость. При содержании более 14% повышаются жаропрочность, жаростойкость и антикоррозионность. Вольфрам, ванадий и молибден измельчают зерно, резко повышают красностойкость быстрорежущей легированной стали.

       Никель  повышает прочность, вязкость, упругость и электросопротивление продукции и понижает коэффициент ее линейного расширения. В сочетании с хромом он является наиболее распространенным легирующим элементом.

       Кремний способствует получению более однородной и плотной структуры. При высоком содержании (15-20%) металл становится кислотоупорным, а при 2-4% - склонным к магнитным превращениям.Все названные выше элементы увеличивают прокаливаемость легированных сталей.

       Хромомарганцевые стали. Совместное легирование хромом (0.9-1.2%) и марганцем (0.9-1.2%) позволяет получить стали с достаточно высокой прочностью и прокаливаемостью.

       Хромоникелевые  стали обладают высокой прокаливаемостью, хорошей прочностью и вязкостью. Они применяются для изготовления крупных изделий сложной конфигурации, работающих при динамических и вибрационных нагрузках. 
 
 
 
 

       12 Сопоставьте свойства углеродистых и легированных инструментальных сталей

       К инструментальным сталям относятся  стали, используемые для обработки  материалов резанием и давлением. По химическому составу различают инструментальные углеродистые стали и инструментальные легированные стали.

       Инструментальные  углеродистые стали содержат от 0,7 до 1,3 процента углерода, обладают высокой твердостью, относительно невысокой стоимостью, но недостаточной износостойкостью и красностойкостью. В основном используются для ручного инструмента или для изготовления металлообрабатывающего инструмента, который во время работы не подвергается воздействию высоких температур.

       Недостатком углеродистых инструментальных сталей является их низкая теплостойкость — способность сохранять большую твердость при высоких температурных нагревах. При нагреве выше 200°С инструмент из углеродистой стали теряет твердость.

       Легированные  инструментальные стали. Легирующие элементы, вводимые в инструментальные стали, увеличивают теплостойкость (вольфрам, молибден, кобальт, хром), закаливаемость (марганец), вязкость (никель), износостойкость (вольфрам), обеспечивают высокую твердость и красностойкость.

       Недостатком легированных инструментальных сталей является высокая стоимость.

       В сравнении с углеродистыми легированные инструментальные стали имеют следующие  преимущества: хорошую прокаливаемость; большую пластичность в отожженном состоянии, значительную прочность  в закаленном состоянии, более высокие режущие свойства. 
 
 
 
 
 
 
 
 
 

       13 Назовите основные легирующие  элементы, обеспечивающие сталям  высокие антикоррозионные свойства 

       Коррозионностойкие  стали. Коррозионностойкой (или нержавеющей) называют сталь, обладающую высокой химической стойкостью в агрессивных средах. Коррозионностойкие стали получают легированием низко- и среднеуглеродистых сталей хромом, никелем, титаном, алюминием, марганцем. Антикоррозионные свойства сталям придают введением в них большого количества хрома или хрома и никеля. Наибольшее распространение получили хромистые и хромоникелевые стали.

       Хромистые стали более дешевые, однако хромоникелевые обладают большей коррозионной стойкостью. Содержание хрома в нержавеющей стали должно быть не менее 12%. При меньшем количестве хрома сталь не способна сопротивляться коррозии, так как ее электрохимический потенциал становится отрицательным.

       Межкристаллитная  коррозия — особый, очень опасный вид коррозионного разрушения металла по границам аустенитных зерен, когда электрохимический потенциал пограничных участков аустенитных зерен понижается вследствие обеднения хромом. Для предотвращения этого вида коррозии применяют сталь, легированную титаном.

       Хромоникелевые  стали содержат большое количество хрома и никеля, мало углерода и относятся к аустенитному классу. Для получения однофазной структуры аустенита сталь закаливают в воде при температуре 1100-1150°С; при этом достигается наиболее высокая коррозионная стойкость при сравнительно невысокой прочности. Для повышения прочности сталь подвергают холодной пластической деформации и применяют в виде холоднокатаного листа или ленты для изготовления различных деталей.

       Хромоникелевые  нержавеющие стали аустенитного класса имеют большую коррозийную  стойкость, чем хромистые стали, их широко применяют в химической, нефтяной и пищевой промышленности, в автомобилестроении, транспортном машиностроении, в строительстве.

       Для экономии дорогостоящего никеля его частично заменяют марганцем.

       Разработаны марки высоколегированных сталей на основе сложной системы Fe—Cr—Ni—Mo—Сu—С. Коррозийная стойкость хромоникель-молибденомеднистых сталей в некоторых агрессивных  средах очень велика. Например, в 80%-ных  растворах серной кислоты.  
 

     14 Какие структуры стали обеспечивают её немагнитные свойства? 

       Наибольшее  распространение, благодаря высоким  механическим свойствам, износостойкости  и долговечности, получили металлические  немагнитные материалы, главным образом немагнитные стали и чугуны, а также сплавы меди и алюминия. Немагнитность сталей и чугунов обеспечивается созданием в них структуры Аустенита, что достигается соответствующим легированием. Аустенитная сталь является наиболее широко распространенным типом нержавеющей стали. Содержание никеля в такой стали - не менее 7%, что придает ей пластичность, широкий спектр режимов термостойкости, немагнитные свойства и хорошую пригодность к сварке.

       Лучшими технологическими свойствами обладают хромоникелевые немагнитные стали, выпускаемые в виде листов, проволоки  и лент. Типичный состав и свойства немагнитной стали с высокой коррозионной стойкостью: до 0,12% С, до 0,8% Si, 1—2% Mn, 17—19% Cr, 11—13% Ni; μ = 1,05—1,2; предел прочности при растяжении 500—600 Мн/м2 (50—60 кгс/мм2); относительное удлинение при разрыве 40—5

       Немагнитная сталь применяется в приборах, где ферромагнитные материалы могут повлиять на точность показаний 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       15 В каком виде может присутствовать  графит в чугунах? 

       Составляющая структуры чугуна, формированного при кристаллизации или термической обработке, имеет ту же гексагенновую, кристаллическую решетку слоистого типа, что и природный графит

       В зависимости от формы включений различают: пластинчатый, вермикулярный — червеобразный, хлопьевидный и шаровидный графит. Эти формы свободного графита определяют основные типы чугунов: серый чугун (СЧ), чугун с вермикулярным графитом (ЧВГ), ковкий чугун (КЧ), высокопрочный чугун с шаровидным графитом.

       Борированный графит - получен из смеси карбонизов углеродных материалов и бора; имеет более совершенную структуру, повышает электропроводность и прочность, т.к. бор, кроме образования карбидной фазы, замешает атомы углерода в слое и является легированной примесью акцепторного типа;

       Вермикулярный графит - графит, мелкие округлые частицы которого, образуют червеобразные скопления; структурная составляющая высокопрочных чугунов;

       Доменный графит – кристаллический графит, выделяющийся при медленном охлаждении больших масс чугуна, например в чугуновозных ковшах, миксерах и др.;

       Карбидный графит — кристаллический, выделяющийся при термическом разложении карбидов;

       Компактный графит – графит, частицы которого имеют форму дендритов; структурная составляющая ковких чугунов;

       Пластинчатый графит - графит с частицами в форме изогнутых пластин; структурная составляющая серых чугунов;

       Хлопьевидный графит - графит, образующийся при отжиге белого чугуна с частицами компактной, почти равновесной, но не округлой формы; структурная составляющая ковкого чугуна. Xлопьевидный графит часто называют углеродом отжига;

Информация о работе Контрольная работа по "Материаловедению"