Контрольная работа по "Материаловедению"

Автор работы: Пользователь скрыл имя, 06 Февраля 2011 в 16:33, контрольная работа

Описание работы

Кристаллическими называются тела, в которых атомы и молекулы расположены в правильном геометрическом порядке, а аморфными (стеклообразными), — в которых атомы и молекулы расположены беспорядочно. Различие в строении кристаллических и аморфных веществ определяет и различия в их свойствах. Так, аморфные вещества химически более активны, чем кристаллические такого же химического состава. Поэтому в качестве активных минеральных добавок к цементам применяют горные породы, имеющие аморфное строение, — диатомиты, трепелы, пемзы, туфы.

Содержание работы

1. Как по своему строению различают твёрдые тела?........................................................2

2. Что такое объемные дефекты?..........................................................................................3

3. Какие свойства имеют монокристаллы, и каковы условия их получения?..................5

4. Каковы отличия дендритной и зональной ликваций; факторы, влияющие на их величину?............................................................................................................................................6

5. С какой целью в технике может использоваться наклеп, и какова природа его образования?.......................................................................................................................................7

6. Что такое первичная и собирательная рекристаллизация?............................................8

7. Как легирующие элементы влияют на структуру сталей?.............................................9

8. Перечислите основные виды термообработки, их назначение и режимы………......10

9. Объясните суть старения и его отличие от отпуска………………………………......12

10 Как влияют примеси в сталях на их свойства?.............................................................14

11.Какие легирующие элементы способствуют повышению прокаливаемости сталей?...............................................................................................................................................15

12. Сопоставьте свойства углеродистых и легированных инструментальных сталей..16

13. Назовите основные легирующие элементы, обеспечивающие сталям высокие антикоррозионные свойства………………………………………………………………………17

14. Какие структуры стали обеспечивают её немагнитные свойства?............................18

15. В каком виде может присутствовать графит в чугунах?............................................19

16. Какие свойства можно получить за счет легирования и термообработки чугунов?.............................................................................................................................................20

17. Как называются основные группы сплавов меди?......................................................21

18. Перечислите деформируемые титановые сплавы и их основные характеристики..22

19. Благодаря каким фазам подвергаются химической обработке высокопрочные магниевые сплавы?...........................................................................................................................24

20. Какова особенность применения бериллия и его сплавов?........................................25

21.Каков механизм дополнительного упрочняющего действия в дисперсно-упрочненных композиционных материалах?................................................................................26

22. Каковы различия между термореактивными и термопластичными материалами?.27

23. Библиографический список…………………………………………………………...28

Файлы: 1 файл

МАТЕР.Д.З готовое.doc

— 196.50 Кб (Скачать файл)

       Повышение долговечности деталей машин  методом поверхностного пластического  деформирования (ППД) или поверхностного наклепа широко используется в промышленности для повышения сопротивляемости малоцикловой и многоцикловой усталости деталей машин.

       Поверхностное упрочнение достигается:

       1) дробеструйным наклепом за счет  кинетической энергии потока  чугунной или стальной дроби;  поток дроби на обрабатываемую  поверхность направляется или  скоростным потоком воздуха, или  роторным дробеметом.

       2) центробежно-шариковым наклепом за счет кинетической энергии стальных шариков (роликов), расположенных на периферии вращающегося диска; при вращении диска под действием центробежной силы шарики отбрасываются к периферии обода, взаимодействуют с обрабатываемой поверхностью и отбрасываются в глубь гнезда;

       3) накатываем стальным шариком  или роликом передача нагрузки  на ролик может быть с жестким  и упругим контактом между  инструментом и обрабатываемой  поверхностью;

       4) алмазным выглаживанием оправкой с впаенным в рабочей части алмазом, оно позволяет получать блестящую поверхность с малой шероховатостью.

       6 Что такое первичная и собирательная  рекристаллизация? 

       Рекристаллизация  — это процесс зарождения и роста новых зерен с меньшим количеством дефектов строения; в результате рекристаллизации образуются новые, чаще всего равноосные зерна.

       В зависимости от температуры нагрева  и выдержки различают три стадии рекристаллизации: первичная, собирательная  и вторичная.

       Первичная рекристаллизация начинается с образования зародышей новых зерен и заканчивается полным замещением наклепанного металла новой поликристаллической структурой.

       На  стадии первичной рекристаллизации зарождение и рост новых зерен происходят одновременно. Зерна растут путем движения болынеугловых границ через наклепанный металл. В таком зерне плотность дислокаций и других дефектов минимальна, в наклепанном металле — максимальна.

       Первичная рекристаллизация заканчивается при  полном замещении новыми зернами  всего объема деформированного металла.

       Первичная рекристаллизация полностью снимет наклеп, созданный при пластическом деформировании, металл приобретает равновесную структуру с минимальным количеством дефектов кристаллического строения. Свойства металла после рекристаллизации близки к свойствам отожженного металла.

       Собирательная рекристаллизация представляет самопроизвольный процесс укрупнения зерен, образовавшихся на стадии первичной рекристаллизации. Чем крупнее зерна, тем меньше суммарная поверхность границ зерен и тем меньше запас избыточной поверхностной энергии (по сравнению с объемом зерен).

       Рост  зерен происходит в результате перехода атомов от одного зерна к соседнему через границу раздела; одни зерна при этом постепенно уменьшаются в размерах и затем совсем исчезают, другие — становятся более крупными, поглощая соседние зерна. С повышением температуры рост зерен ускоряется.

       Собирательная рекристаллизация тормозится, когда зерна становятся многогранниками с плоскими гранями, а углы между соседними гранями составляют 120°.  
 
 
 
 
 

       7 Как легирующие элементы влияют на структуру сталей? 

       Влияние легирующих элементов. Легирующие элементы вводят в сталь для повышения ее конструкционной прочности. Основной структурной составляющей в конструкционной стали является феррит, занимающий в структуре не менее 90% по объему. Растворяясь в феррите, легирующие элементы упрочняют его.

       Хром оказывает благоприятное влияние на механические свойства конструкционной стали. Его вводят в сталь в количестве до 2%; он растворяется в феррите и цементите.

       Никель  — наиболее ценный легирующий элемент. Его вводят в сталь в количестве от 1 до 5%.

       Марганец вводят в сталь до 1,5%. Он распределяется между ферритом и цементитом. Марганец заметно повышает предел текучести стали, но делает сталь чувствительной к перегреву. В связи с этим, для измельчения зерна одновременно с марганцем в сталь вводят карбидообразующие элементы.

       Кремний является не карбидообразующим элементом, и его количество в стали ограничивают до 2%. Он значительно повышает предел текучести стали и при содержании более 1% снижает вязкость и повышает порог хладноломкости.

       Молибден  и вольфрам являются карбидообразующими элементами, которые большей частью растворяются в цементите. Молибден в количестве 0,2-0,4% и вольфрам в количестве 0,8-1,2% в комплексно-легированных сталях способствуют измельчению зерна, увеличивают прокаливаемость и улучшают некоторые другие свойства стали.

       Ванадий и титан — сильные карбидообразующие элементы, которые вводят в небольшом количестве (до 0,3% V и 0,1% Ti) в стали, содержащие хром, марганец, никель, для измельчения зерна. Повышенное содержание ванадия, молибдена и вольфрама в конструкционных сталях недопустимо из-за образования специальных трудно растворимых при нагреве карбидов. Избыточные карбиды, располагаясь по границам зерен, способствуют хрупкому разрушению и снижают прокаливаемость стали.

       Бор вводят для увеличения прокаливаемости в очень небольших количествах (0,002-0,005%). 
 
 
 
 
 

       8 Перечислите основные виды термообработки, их назначение и режимы 

       Термической обработкой называется технологический  процесс, состоящий из совокупности операций нагрева, выдержки и охлаждения изделий из металлов и сплавов, целью которого является изменение их структуры и свойств в заданном направлении.

       Термическая обработка, заключающаяся в нагреве  металла, находящегося в результате каких-либо предшествующих воздействий в неравновесном состоянии, и приводящая его в более равновесное состояние, называется отжигом. Охлаждение после отжига производится вместе с печью. Нагрев при отжиге может производиться ниже и выше температур фазовых превращений в зависимости от целей отжига. Отжиг, при котором нагрев и выдержка металла производится с целью приведения его в однородное (равновесное) состояние за счет уменьшения (устранения) химической неоднородности, снятия внутренних напряжений и рекристаллизации называется отжигом первого рода. Его проведение не связано с прохождением фазовых превращений. Он возможен для любых металлов и сплавов. В зависимости от того, какие отклонения от равновесного состояния устраняются существуют следующие разновидности отжига 1-го рода: гомогенизационный, рекристаллизационный и уменьшающий напряжения отжиг.

       Гомогенизационный (диффузионный) отжиг — это термическая  обработка, при которой главным  процессом является устранение последствий дендритной ликвации (химической неоднородности).

       Рекристаллизационный  отжиг — это термическая обработка  деформированного металла, при которой  главным процессом является рекристаллизация металла.

       Отжиг, уменьшающий напряжения — это термическая обработка, при которой главным процессом является полная или частичная релаксация остаточных напряжений.

       Отжиг, при котором нагрев производится выше температур фазовых превращений  с последующим медленным охлаждением  для получения структурно равновесного состояния, называется отжигом второго рода или перекристаллизацией.

       Если  после нагрева выше температур фазовых  превращений охлаждение ведется  не в печи, а на воздухе, то такой  отжиг называется нормализацией, которая  является переходной ступенью от отжига к закалке. Существуют два вида закалки: закалка без полиморфного превращения и закалка с полиморфным превращением. Закалка без полиморфного превращения заключается в нагреве металла или сплава до температур растворения избыточной фазы, выдержке при этой температуре с целью получения однородного пересыщенного твердого раствора, и в фиксации полученного пересыщенного твердого раствора за счет быстрого охлаждения в сильном охладителе (вода, масло и др.).

       В результате этого сплав имеет  структурно неустойчивое состояние. Этот вид закалки характерен для сплавов  алюминия с медью — дуралюминов.

       Термическая обработка, заключающаяся в нагреве  металла выше температур фазовых  превращений с последующим быстрым охлаждением для получения структурно неравновесного состояния, называется закалкой с полиморфным превращением. Этот вид закалки характерен для сплавов железа с углеродом (стали). После закалки в стали образуется структура пересыщенного твердого раствора углерода в a -железе, которая называется мартенситом. Состояние закаленного сплава характеризуется особой неустойчивостью. Процессы, приближающие его к равновесному состоянию, могут идти даже при комнатной температуре и резко ускоряются при нагрева.

       Термическая обработка, представляющая собой нагрев закаленного сплава ниже температур фазовых превращений (ниже АС1) для  приближения его структуры к  более устойчивому состоянию, называется отпуском. Отпуск является операцией, проводимой после закалки стали (закалки с полиморфным превращением). Между отпуском и отжигом 1-го рода много общего. Разница в том, что отпуск — всегда вторичная операция после закалки.

       Самопроизвольный  отпуск, происходящий после закалки без полиморфного превращения, в результате длительной выдержки при комнатной температуре, или отпуск при сравнительно небольшом подогреве, называется старением. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       9 Объясните суть старения и  его отличие от отпуска 

       Старение применимо к сплавам, которые были подвергнуты закалке без полиморфного превращения. Пересыщенный твёрдый раствор в таких сплавах термодинамически неустойчив и склонен к самопроизвольному распаду. Старение заключается в образовании путём диффузии внутри зерен твердого раствора участков, обогащенных растворённым элементом (зон Гинье — Престона) и (или) дисперсных частиц избыточных фаз, чаще всего химических соединений. Эти зоны и дисперсные частицы выделившихся фаз тормозят скольжение дислокаций, чем и обусловлено упрочнение при старении. Стареющие сплавы называют поэтому дисперсионно-твердеющими.

       Основные  параметры старения — температура  и время выдержки. С повышением температуры ускоряются диффузионные процессы распада пересыщенного  твёрдого раствора, и сплав быстрее упрочняется. Начиная с определённой выдержки, при достаточно высокой температуре происходит перестаривание — снижение прочности сплава. Причиной перестаривания является коагуляция дисперсных выделений из раствора, которая заключается в растворении более мелких и росте более крупных частиц выделившейся фазы. В результате коагуляции расстояние между этими частицами возрастает и торможение дислокаций в зёрнах твёрдого раствора уменьшается. Одни сплавы, например дуралюмины, после закалки сильно упрочняются уже во время выдержки при комнатной температуре (естественное старение).

       Большинство сплавов после закалки нагревают, чтобы ускорить процессы распада  пересыщенного твёрдого раствора (искусственное старение). Иногда проводят ступенчатое старение с выдержкой вначале при одной, а затем при другой температуре. Старение применяют главным образом для повышения прочности и твёрдости конструкционных материалов (алюминиевых, магниевых, медных, никелевых сплавов и некоторых легированных сталей), а также для повышения коэрцитивной силы магнитно-твёрдых материалов. Время выдержки для достижения заданных свойств в зависимости от состава сплава и температуры старения колеблется от десятков мин до нескольких сут.

       Отпуску подвергают сплавы, главным образом стали, закалённые на мартенсит. Основные параметры процесса — температура нагрева и время выдержки, а в некоторых случаях и скорость охлаждения (для предотвращения отпускной хрупкости). В сталях мартенсит является пересыщенным раствором, и сущность структурных изменений при отпуске та же, что и при старении, — распад термодинамически неустойчивого пересыщенного раствора.

Информация о работе Контрольная работа по "Материаловедению"