Использование низкопотенциальных вторичных энергоресурсов

Автор работы: Пользователь скрыл имя, 18 Декабря 2015 в 12:11, курсовая работа

Описание работы

В нефтеперерабатывающей промышленности получили большое распространение воздушные холодильники и конденсаторы-холодильники различных технологических потоков.
Применение аппаратов воздушного охлаждения (АВО) дает ряд эксплуатационных преимуществ, главными из которых являются экономия охлаждающей воды и уменьшение количества сточных вод, сокращение затрат труда на чистку аппарата ввиду отсутствия накипи и солеотложения, уменьшение расходов на организацию оборотного водоснабжения технологических установок.

Файлы: 1 файл

курсовая пупсика.doc

— 333.50 Кб (Скачать файл)

Введение

 

В нефтеперерабатывающей промышленности получили большое распространение воздушные холодильники и конденсаторы-холодильники различных технологических потоков.

Применение аппаратов воздушного охлаждения (АВО) дает ряд эксплуатационных преимуществ, главными из которых являются экономия охлаждающей воды и уменьшение количества сточных вод, сокращение затрат труда на чистку аппарата ввиду отсутствия накипи и солеотложения, уменьшение расходов на организацию оборотного водоснабжения технологических установок.

Трубки в АВО применяются с наружним спиральным оребрением, в результате чего существенно улучшается теплопередача. Интенсификация теплообмена с помощью оребрения поверхности труб может быть достигнута только при условии хорошего подвода тепла от стенок труб к ребрам, что обеспечивается изготовлением ребристых труб из материалов с высоким коэффициентом теплопроводности или изготовлением ребристых труб из биметалла, причем материал ребер должен обладать большим коэффициентом теплопроводности, чем материал трубы.

В данной работе производится проектный расчет воздушного холодильника горизонтального типа.

 

  1. Использование низкопотенциальных вторичных энергоресурсов

 

Наиболее сложно найти применение низкопотенциальным тепловым ВЭР (<100 °С). В последнее время их используют для отопления и кондиционирования промышленных и жилых зданий, применяют тепловые насосы для повышения температурного потенциала или для получения холода. Такие ВЭР используют только на отопление близко расположенных теплиц или рыбоводных хозяйств.

В промышленных условиях охлаждение дымовых газов до температуры ниже 100 °С весьма затруднительно прежде всего из-за конденсации водяных паров. Холодные стенки труб, по которым циркулирует нагреваемая среда, запотевают и подвергаются интенсивной коррозии. Чтобы исключить коррозию, промышленные подогреватели воздуха иногда изготавливают из некорродирующихся стеклянных труб. Если нет вибрации, такие трубы работают достаточно долго.

Для подогрева воды низкотемпературными газами (t< 100 °С) начинают использовать контактные экономайзеры, представляющие собой обычные смесительные теплообменники типа градирни (рис. 1.1).

Вода в них нагревается за счет теплоты контактирующих с ней газов. Поверхность контакта капель воды с газом большая, и теплообменник получается компактным и дешевым по сравнению с рекуперативным (трубчатым), но вода насыщается вредными веществами, содержащимися в дымовых газах. В некоторых случаях это допустимо, например, для воды, идущей в систему хим-водоподготовки в котельных или на ТЭС. Если загрязнение воды недопустимо, то ставят еще один теплообменник, в котором «грязная» вода отдает теплоту «чистой» и возвращается в контактный экономайзер. Змеевики, по которым циркулирует «чистая» вода, можно установить и внутри контактного экономайзера вместо насадки.

 

Рис. 1.1 - Схема смесительного теплообменника (градирни): 1 — насадка (кольца Рашига); 2— каплеотбойник; 3— вытяжной вентилятор

 

1.1 Направление и общие  схемы использования отработавшего  пара

 

Отработавший производственный пар имеет давление 0,1—0.3 МПа, а иногда и 1 МПа, т. е. колеблется в широких пределах. Однако, несмотря на широкий диапазон колебания давления отработавший (иногда называют мятым) пар в основном имеет низкое давление.

Отработавший пар многих производств загрязнен механическими и агрессивными химическими примесями. Некоторые производственные агрегаты работают с переменной нагрузкой, что ведет к образованию прерывистых потоков отработавшего пара. Все это усложняет использование отработавшего пара и вызывает необходимость предварительной очистки пара от загрязнения, преобразования прерывистых потоков отработавшего пара в постояный поток тепла, а также повышения давления отработавшего пара с помощью тепловых трансформаторов.

Отработавший производственный пар используют для технологических целей, теплоснабжения, выработки электроэнергии, комбинированно для целей выработки электроэнергии и теплоснабжения, получения холода.

Использование отработавшего пара для технологических целей чрезвычайно разнообразно и определяется в каждом отдельном случае характером технологического процесса. Например, пропарка бетона, подача пара в газогенератор при получении смешанного или водяного газа, нагрев аммиака на заводах азотной промышленности, разофев вязкого мазута, увлажнения доменного дутья и т.п.

Это направление является наиболее простым по исполнению, капитальные затраты и эксплуатационные расходы не значительны, а энергетический эффект весьма высок, так как коэффициент регенерации тепла и зависит только от температуры отводимого конденсата и состав ляет не менее 85%, а при использовании конденсата в технологическом процессе равен 100%.

По схеме использования отработавшего пара для теплоснабжения (рис. 1.2) отходящий от производственной установки 1 отработавший пар проходит через очистительное устройство 2 и направляется к тепловому потребителю 3. При резких колебаниях количества пара,потребляемого производственной установкой, на линии острого пара применяется установка пароводяного аккумулятора 4. При несоответствии режимов отхода отработавшего пара и тепловых нагрузок теплового потребителя устанавливается аккумулятор 5.

 

Рис. 1.2 - Принципиальная схема использования отработавшего газа для теплоснабжения

 

Рис. 1.3 - Теплоутилизационная установка с подогревателями смешения

 

По схеме теплоутилизационной установки с подогревателями смешения (рис. 1.3) отработавший пар, пройдя пароочиститель 1 поступает в пленочный подогреватель смешения 2. От потребителей 4 и 5 сетевая вода направляется в коллектор 3 и подогреватель смешения 2, где подогревается отработавшим паром. Из подогревателя вода поступает в сборный бак 9, откуда насосами S подается в тепловую сеть 6. При повышенном расходе тепла у потребителей вода дополнительно подогревается острым паром в пиковом подогревателе 7. Эту схему можно применять при высококачественной очистке пара от загрязнений и отсутствия требования о возврате конденсата. Если конденсат подлежит возврату в котельную, то установка выполняется с поверхностными подогревателями.

Отработавший пар для выработки электроэнергии может использоваться в турбинах мятого пара, в турбинах двойного давления, а также в теплофикационных турбинах с промежуточным подводом пара.

 

Рис. 1.4 - Схема использования отработавшего пара для выработки электроэнергии:

1 — производственный  агрегат; 2 — пароочиститель; 3 — турбина мятого пара; 4— турбина двойного давления; 5, 6 — тепловые аккумуляторы; 7— парогенератор; 8 — теплофикационная турбина

 

Установки с турбиной мятого пара (рис. 1.4,а) предназначены для выработки электроэнергии только за счет отработавшего пара. В связи с тем, что возможны перерывы в поступлении отработавшего пара от производственного агрегата, тепловые аккумуляторы, особенно аккумулятор 5 должны выполнятся со значительной аккумулирующей способностью. Работа установки с турбинами двойного давления протекает в более благоприятных условиях, так как в турбину 4 (рис. 1.4,6) не зависимо от работы производственного агрегата / обеспечено непрерывное поступление пара, и аккумулятор 6 обычно в этом случае не устанавливается. Если на предприятии имеется местная ТЭЦ, отработавший пар используют в теплофикационных агрегатах (рис. 1.4,в).

Энергетическая эффективность использования отработавшего пара для выработки электроэнергии, как правило, не зависит от общей схемы энергоснабжения данного предприятия. Это обусловлено тем, что утилизационная электрогенерирующая установка замещает в общем случае соответствующую мощность конденсационной электростанции.

В связи с тем, что электроснабжение сезонного характера не имеет, а избытки выработанной электроэнергии всегда могут быть переданы в общую электросеть, это значительно облегчает круглогодичное использование отработавшего пара и делает весьма перспективными комбинированные установки для теплоснабжения и выработки электроэнергии.

По схеме комбинированного использования тепловой потребитель включается на линии между пароочистителем и турбиной. В теплоутилизационной установке (рис. 1.5) пар из парогенератора 1 поступает на производственный агрегат 3, на турбину двойного давления 12 и паровой привод питательного насоса 10. Летом отработавший пар используется в основном в турбине 12 для производства электроэнергии, зимой в теплообменнике 7 для подогрева сетевой воды.

 

Рис. 1.5 - Схема теплоутилизационной установки для выработки теплоэнергии и теплоснабжения:

1 — парогенератор; 2—  промежуточный пароперегреватель; 3 — производственный агрегат; 4—  пароочиститель; 5— тепловой аккумулятор; 6— потребители тепла; 7— теплообменник; 8— бак питательной воды; 9—  химводоочистка; 10— питательный  насос; 11— конденсатор; 12— турбина двойного давления

 

Схема дает возможность свободно перераспределять потоки отработавшего пара между электрогенерирующей установкой и тепловыми потребителями.

 

Рис. 1.6 - Схема комплексного использования тепла отработавшего пара летом и зимой:

1 — пароочиститель; 2 —  производственный агрегат; 3 — парогенератор; 4— теплофикационная турбина; 5—  потребитель электроэнергии; 6—  потребитель тепла; 7— потребитель  холода; 8 — конденсатор; 9 — теплообменник; 10 — абсорбционная холодильная  установка; 11 — бак ниппельной воды; 12 — питательный насос

 

Получение холода. Потребности промышленности в холоде непрерывно возрастают. Крупными потребителями холода являются заводы химической, металлургической, пищевой и других отраслей промышленности. Холод все больше применяется в технологических процессах, для кондиционирования воздуха, получения искусственного льда, а также для процессов, связанных с низкими температурами.

Подавляющее большинство предприятий оснащено в настоящее время компрессионными холодильными машинами. Эти машины сложны и дороги, а главное — для производства холода затрачивают очень много электрической энергии. Электрическую энергию могут заменить тепловые отходы, имеющиеся в избытке почти на каждом химическом, металлургическом, нефтехимическом предприятии, т. е. как раз в тех отраслях производства, которые являются основными потребителями холода. Холод за счет тепловых отходов получают в абсорбционных холодильных машинах. Перспективным является также использование для этих целей сезонных излишков тепла ТЭЦ.

Абсорбционные холодильные машины могут устанавливаться как самостоятельные автономные установки, так и в сочетании с установками теплоснабжения и выработки электроэнергии. Применение автономных холодильных установок может быть оправданно лишь тогда, когда холодоснабжение осуществляется круглогодично. Поскольку в большинстве случаев холодоснабжение носит сезонный (летний) характер, то более рационально осуществлять комплексное использование тепла отработавшего пара (рис. 1.6). Отработавший пар от производственного агрегата 2 после пароочистителя 1 направляется в магистраль, в которую поступает также пар из промышленного отбора теплофикационной турбины 4. Из этой магистрали в летний период пар поступает в абсорбционную холодильную установку 10, снабжающую холодом потребителя 7. В зимний период включается в работу теплообменник 9 для снабжения теплом потребителя 6.

Преимуществом данной схемы является возможность эффективного круглогодичного использования отработавшего пара, а также круглогодичная работа турбины но теплофикационному циклу.

 

1.2 Принципиальные схемы  использования теплоты производственной  воды

 

Вода широко применяется для охлаждения конструктивных элементов огнетехнических установок, а также в производственных процессах, протекающих при низких температурах, для искусственного охлаждения технологического продукта или аппаратуры. Примерами могут служить: водяное охлаждение металлургических печей, печей химических производств; охлаждения горячей серной кислоты после контактного аппарата или конденсатора; охлаждение водой различных нефтепродуктов; охлаждение конденсаторов паровых турбин, масло- и воздухоохладителей генераторов на электростанциях, конденсаторов смешивающего типа выпарных батарей алюминиевых растворов на глиноземных заводах; охлаждение рубашек цилиндров двигателей внутреннего сгорания и т.д.

Конечная температура охлаждающей воды колеблется в интервале 293—363 К, не превышая в большинстве случаев 232—433 К.

Нагретую производственную воду можно использовать для теплоснабжения и горячего водоснабжения, агротеплофикации и для выработки электроэнергии.

Теплоснабжение. Использование нагретой производственной воды для теплоснабжения часто затруднено из-за сезонного характера отопительной нагрузки. График потребления такой воды можно несколько выровнять, внедряя горячее водоснабжение. Большие избытки неиспользованной нагретой воды, особенно в летний период, рационально утилизировать в абсорбционно-холодильных установках.

Возможным вариантом использования производственной воды для теплоснабжения является нагревание вентиляционного воздуха, поступающего в производственные помещения. Интересны комбинированные схемы, предусматривающие одновременное использование охлаждающей воды и какого-либо другого вида ВЭР, например использование тепла горячего воздуха из колчеданных печей и тепла охлаждающей воды из сернокислотных холодильников. По этой схеме (рис. 1.7) горячий воздух из валов колчеданных печей 1 с температурой 473 К используют в первой зоне теплообменника 2 для нагрева воды на нужды централизованного теплоснабжения комбината и жилого поселка. Температура горячего воздуха после теплообменников составляет 343 К. Охлаждающую воду из сернокислотных холодильников используют для восполнения утечек из тепловых сетей и покрытия нагрузок горячего водоснабжения поселка и комбината. Воду для охлаждения кислоты подают из реки в холодильники 3, в которых она нагревается до 313 К. Затем отправляют в промежуточный сборный бак 4, откуда насосом перекачивают к водоподготовительной установке 5. После очистки от механических приме сей устранения временной жесткости и деаэрации подпиточную воду подают в теплообменник 2, где она подогревается до 335 К. Подпиточную и обратную воду после смешения подают насосом во вторую зону теплообменника 2, где она подогревается до 355 К и поступает в тепловые сети.

Информация о работе Использование низкопотенциальных вторичных энергоресурсов