Автор работы: Пользователь скрыл имя, 20 Апреля 2014 в 13:13, курсовая работа
Опыт показал, что для увеличения эффективности и надежности работы УЭЦН, извлечения дополнительной нефти при нарастающей обводненности, одной из важных задач является обеспечение работ насосных установок в оптимальном режиме, обеспечивающем минимальные энергетические затраты, возможно больший межремонтный период работы оборудования, а также повышения коэффициента эксплуатации.
Цель работы - провести анализ работы и оптимизацию скважин, оборудованных УЭЦН на Южно-Ягунском месторождении НГДУ «Когалымнефть» ЦДНГ-1, которое по объему начальных запасов относится к разряду крупных.
ВВЕДЕНИЕ
1. ОБЩАЯ ЧАСТЬ
1.1 Характеристика района
1.2 История освоения месторождения
2 ГЕОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 Краткая геолого-физическая характеристика месторождения
2.1.1 Стратиграфи
2.1.2 Тектоническое Нефтеносность месторождений. Гидрогеология
2.2 Коллекторские свойства продуктивных пластов
2.3 Свойства пластовых жидкостей и газов
3. ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
3.1 Основные проектные решения по разработке Южно - Ягунского месторождения
3.2 Текущее состояние разработки
3.3 Анализ системы заводнения
3.4 Анализ результатов гидродинамических исследований скважин и пластов, характеристика их продуктивности и режимов
4 ТЕХНИЧЕСКАЯ ЧАСТЬ
4.1 Требования к конструкции скважин, технологиям и проиводству
буровых работ
4.2 Подземное и устьевое оборудование при различных способах добычи
4.2.1 Фонтанная эксплуатация скважин
4.2.2 Эксплуатация скважин штанговыми глубинными насосными установками
4.2.3 Общие сведения об эксплуатации скважин УЭЦН
4.2.4 Технические характеристики насосов
4.3 Преимущество скважин оборудованных УЭЦН
5 СПЕЦИАЛЬНАЯ ЧАСТЬ
5.1 Характеристика фонда скважин, оборудованных УЭЦН
5.2 Анализ эффективности работы и причины отказов УЭЦН
5.3 Анализ ремонтов УЭЦН не отработавших гарантийный срок
5.4 Анализ применения УЭЦН Российского производства
5.5 Анализ применения УЭЦН импортного производства
5.6 Способы борьбы с осложнениями при эксплуатации УЭЦН
5.7 Подбор оборудования и установление оптимального режима эксплуатации скважин оборудованных УЭЦН
6. ОРГАНИЗАЦИОННО-ЭКОНОМИЧЕСКАЯ ЧАСТЬ
6.1 Оптимизация режима работы скважин.
6.2 Расчет потока денежной наличности от применения НТП.
6.3 Анализ чувствительности проекта к риску.
7. ОЦЕНКА БЕЗОПАСНОСТИ И ЭКОЛОГИЧНОСТИ ПРОЕКТА
7.1 Обеспечение безопасности работающих
7.1.1 Основные вредные и опасные факторы в процессе производства
7.1.2 Расчет заземления скважин, оборудованных ЭЦН
7.1.3 Основные мероприятия по обеспечению безопасных условий труда.
7.1.4 Средства индивидуальной защиты
7.2 Оценка экологичности проекта
7.2.1 Анализ и оценка опасности для природной среды при обслуживании скважин, оборудованных ЭЦН
7.2.2 Расчет выбросов вредных веществ (углеводородов) от скважин
7.2.3 Расчет выбросов вредных веществ от свечи рассеивания
7.2.4 Основные мероприятия по охране природной среды
7.2.5 Охрана недр при эксплуатации скважин, оборудованных ЭЦН
7.3 Оценка и прогнозирование чрезвычайных ситуаций
7.3.1 Описание возможных аварийных ситуаций
7.3.2 Характеристика мероприятий по защите персонала промышленного объекта в случае возникновения ЧС
ВЫВОДЫ
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ
Замеры пластового давления в скважинах служат основой для потроения карт изобар.
Результаты исследования скважин, выполняемые на месторождении, в основном качественные и пригодны для использования.
В таблице 3.3. приведены основные результаты исследований скважин и пластов. Необходимо отметить, что по основным объектам даны показатели, рассчитанные по скважинам, охваченных исследованиями.
Разработка всех залежей объектов осуществляется с поддержанием пластового давления с начала эксплуатации. Режим залежей характеризуется как жесткий водонапорный.
Таблица 3.3 Результаты исследования скважин и пластов
Наименование |
1БС10 |
2БС10 |
1БС11 |
2БС11 |
ЮС1 |
Средневзвешенное пластовое давление, атм |
219,0 |
228,4 |
218,0 |
232,0 |
234,2 |
Пластовая температура, ºС |
71 |
73 |
80 |
82 |
83 |
Ср.дебит нефти, т/сут |
16,4 |
35,6 |
27,8 |
33,6 |
3,5 |
Обводненность весовая, % |
34 |
25,4 |
46 |
40,4 |
67,1 |
Газовый фактор, м3 /т |
53 |
45 |
46 |
72 |
83 |
Коэффициент продук-тивности, м3 /сут*атм |
0,25 |
0,389 |
0,18 |
0,375 |
0,072 |
Гидропроводность, мкм/мПа*с |
1,75 |
32 |
50,7 |
50,7 |
1,56 |
Проницаемость, мкм |
14 |
117 |
39 |
101 |
14 |
Объем исследованных скважин для определения коэффициента продуктивности составляет 13% от всего пробуренного фонда. При расчетах были учтены коэффициенты продуктивности по результатам опробования скважин.
По Южно - Ягунскому месторождению были проанализированы данные исследований 23 нагнетательных скважин по пласту 2БС10 и 33 нагнетательных скважин по пласту 2БС11.
Результаты исследования нагнетательных скважин приведены в таблице 3.4.
Как видно из таблицы, по пласту 2БС10 толща охвачена заводнением на 32% от всего числа пропластков, а по пласту 2БС11 этот показатель составляет 36.8%.
Таблица 3.4 Результаты исследования нагнетательных скважин
Количество скважин |
Число перф.интерв. |
Работающие пропластки, % |
Не охвачено заводнением, % | ||
верх |
середина |
низ | |||
Пласт 2БС10 | |||||
23 |
25 |
36 |
12 |
20 |
32 |
Пласт 2БС11 | |||||
33 |
33 |
23,7 |
10,5 |
20 |
36,8 |
Также на Южно-Ягунском месторождении проводятся геофизические исследования. За 2001 год было проведено 366 исследований в 306 скважинах, что составляет 29% действующего фонда. В 321 скважине проведено 276 исследований с целью определения герметичности колонны.
Проводятся гамма - каротаж (ГК),основной замер 100 метров на подъеме с захватом вышележащего водоносного пласта, контрольный замер 50 м в интервале перфорации и в местах искажения ГК проявлением радиоактивных аномалий. Высокочувствительная термометрия (ВЧТ)- в остановленной на 6-8 часов скважине. Выполняются основной и контрольный замеры. При необходимости остановка скважины контролируется глубинным манометром по восстановлению забойного давления. Влагометрия (ВГД) в остановленной скважине - производится запись ВНР, если пласт работает через застойную воду ( на поверхности - нефть, в интервале пласта - вода).
Технология исследования скважин с закачкой меченого вещества.
Решаются задачи выделения интервалов обводнения, отдающих (поглощающих) пластов, определения профиля отдачи ( поглощения ), остаточной нефтенасыщенности, установления негерметичности цементного колодца и возможных заколонных перетоков, получения опорной информации для оценки степени выработки запасов на месторождениях, вступивших во вторую и третью стадии разработки.
Технология включает закачку в прискваженную часть пласта вещества с аномальными нейтроннопоглащающими свойствами и проведение фоновых и повторных измерений методом импульсного нейтронного каротажа (ИНК , чувствительным к содержанию таких веществ в околоскважинном пространстве. Основным интерпретационным параметром ИНК является декремент затухания плотности тепловых нейтронов Л, в качестве дополнительных параметров может быть использовано время жизни тепловых нейтронов Т, скорость счета во временных окнах на задержках после импульса нейтронов.
В качестве меченного вещества используют хлористый натрий, хлористый кальций, хлористый калий, соляную кислоту. Соляная кислота хорошо пропитывает низкопроницаемые глинистые породы, насыщенные нефтью и обеспечивает большой охват вытеснением неоднородных по проницаемости коллекторов по сравнению с водными растворами. Ее целесообразно использовать для решения качественных задач контроля за разработкой. Этот вид исследования только недавно начал внедряться на Южно - Ягунском месторождении. В 2001 году исследовались 5 скважин.
Скажины 1396/126, 2923/118, 772/44 были исследованы методом шумометрии. Объем исследований РГТ за 2001 год составил 103 скважины.
Объем исследований высокочувствительным термометром в добывающих скважинах составил 306 скважин, по определению притока исследовались 200 скважин, по отбивке забоя 59 скважин, по проверке на герметичность 47 скважин.
На Южно - Ягунском месторождении планируется использование всевозможных методов увеличения нефтеотдачи пластов и вовлечение в разработку слабодренируемых запасов, в том числе 8 ГРП, 80 системных технологий, 102 ОПЗ, 19 переходов. Необходимо более широко внедрять циклическую закачку в комплексе с системными технологиями и одновременно проводить селективную изоляцию на добывающих скважинах.
Контроль за объемами закачки воды осуществляется с помощью счетчиков СВУ. 85% замеров телемеханизированы, остальные замеряются в ручном режиме. Все действующие скважины оборудованы замерными устройствами. Контроль ведется по кустовым насосным скважинам, по направлениям и по скважинам.
На нагнетательных скважинах за прошедший год проведено 28 капитальных ремонтов и 136 текущих. С целью увеличения приемистости нагнетательных скважин проведено 21 кислотных обработок.
В таблице 3.5. приведены обемы промысловых геофизических и гидродинамических исследований, выполненных на Южно-Ягунском месторождении в 2001 году
Таблица 3.5 ПГИ и ПГД за 2001 год на Южно-Ягунском месторождении.
№ п/п |
Вид исследований |
Количества | |
скважин |
Замеров | ||
1 |
Определение профиля притока, источника обводн. и тех. сост. добывающих скважин |
59 |
63 |
2 |
Определение профиля приемистости, тех. состояния нагнетательных скважин |
208 |
211 |
3 |
Исследования гироскопичес. инклинометром |
121 |
121 |
4 |
Определение Рпл. |
177 |
419 |
5 |
Определение Нст. |
753 |
2525 |
6 |
Определение Ндин. |
1082 |
8121 |
7 |
Исследование методом КВУ |
230 |
266 |
8 |
Исследование методом ПД |
92 |
180 |
9 |
Замер дебита добывающих скважин |
920 |
58717 |
10 |
Отбор устьевых проб на водосодержание |
920 |
37350 |
11 |
Замер приемистости нагнетательных скважин |
160 |
7370 |
Геолого–технические мероприятия (ГТМ)
На месторождении планомерно внедряются различные методы повышения нефтеотдачи и интенсификации добычи нефти.
В 2001 году на Южно-Ягунском месторождении проведено 239 ГТМ с суммарным приростом дебитов добывающих скважин 1995т/сут. За счет этих мероприятий за год добыто 309,193 т.т. нефти.
Их перечень приведен в таблице 3.6.
Таблица 3.6 ГТМ за 2001 год.
№ п/п |
Вид мероприятий |
Кол-во скв-н |
Добыча нефти, т.т. |
Средний при-рост дебита на 1скв-ну,т/сут |
1 |
Ввод новых скважин |
4 |
10,47 |
14,4 |
2 |
Ввод из бездействия |
35 |
72,38 |
11,7 |
3 |
Ввод из консервации, пьезометра |
42 |
21,48 |
2,6 |
4 |
Перевод на мех.добычу |
3 |
6,02 |
12,7 |
5 |
Оптимизация режимов работы скважин |
120 |
100,21 |
5,0 |
6 |
Ремонтно-изоляционные работы |
18 |
15,4 |
8,2 |
7 |
Интенсификация притоков (ОПЗ) |
53 |
65,01 |
10,1 |
8 |
Возврат с других горизонтов |
9 |
10,5 |
7,1 |
ИТОГО |
293 |
309,19 |
6,8 |
Как видно из таблицы 3.6. наиболее эффективны (по приросту дебита скважин) такие ГТМ, как перевод скважин на мех. добычу, ввод новых скважин, ввод скважин из бездействия.
В течение года выполнено 132 капитальных ремонтов добывающих скважин силами подрядных организаций: УПНП и КРС, «Когалымнефтепрогресс», Woodbine. При среднегодовой успешности ремонтов 80,0%, по всем отремонтированным скважинам добыто 284,5т.т нефти, из них 183,86т.т.-дополнительная добыча. На нагнетательных скважинах проведено 23 капитальных и 42 текущих ремонтов. Введено под нагнетание 15 скважин.
Эффективность методов увеличения нефтеотдачи (МУН) пластов приведена в следующей таблице 3.7.
Таблица 3.7 Эффективность МУН применяемых в месторождений
№ п/п |
Метод, технология |
Количество, скв./обр. |
Доп.добыча нефти, т.т. |
1 2 3 |
Химические МУН ОПЗ добывающих скважин Гидродинамические МУН Физические МУН |
87/95 49/50 84 12 |
258,2 66,65 106,04 48,14 |
За текущий год по НГДУ «Когалымнефть» за счет применения физико-химических методов увеличения нефтеотдачи пластов (ГРП, СПС, ВДС, ЭСС, КМЭ и их композиций) дополнительно добыто 306,344т.т. нефти, за счет форсированного отбора и циклической закачки (ГМУН) – 106,04 т.т.
4 ТЕХНИЧЕСКАЯ ЧАСТЬ
4.1 Требования к конструкции скважин, технологиям и производству буровых работ
Важнейшим этапом проектирования, обуславливающим качество строительства скважин, а также дальнейшую эффективную и длительную эксплуатацию является выбор рациональной конструкции скважины.
Конструкция должна быть экономичной и обеспечивать: эксплуатационную надежность скважины как технического сооружения, проектный уровень ее эксплуатации, оптимальный режим проводки ствола скважины на уровне современной техники и технологии, предупреждение осложнений и аварий, а также охрану недр в процессе бурения и в период эксплуатации, качественное разобщение продуктивных и проницаемых горизонтов.
В соответствии с этим, а также с учетом конкретных геолого-физических характеристик залегаемых пород и условий вскрытия продуктивных пластов для Южно-Ягунского месторождения рекомендуются следующие варианты конструкций, скважин в зависимости от применяемой технологии.
При вскрытии продуктивных пластов БС11-1, ЮС1 и ЮС2 рекомендуется следующая конструкция скважин:
- направление диаметром
425 мм спускается на глубину 30-50
м, трубы отечественного
- кондуктор диаметром
324 мм в добывающих скважинах
– на глубину 400-450 м, а в нагнетательных,
как минимум, на 20 м ниже подошвы
люлинворской свиты. Трубы отечественного
производства с резьбой типа
ОТТМ. Цементируется раствором
- при установке в верхней части кондуктора спец. приспособлений для удержания цементного раствора в кольцевом пространстве (при опускании его уровня в процессе ОЗЦ) возможен вариант бурения без спуска направления. Однако, необходимо иметь ввиду, что подъем цементного раствора до устья за кондуктором во всех скважинах не гарантируется. Тем самым не всегда обеспечивается изоляция верхних водоносных горизонтов и, как следствие, не исключает их загрязнение.
Предпочтительнее спуск и цементирование направления. В нижней части кондуктор центрируется с целью предотвращения возможных осложнений в процессе дальнейшего углубления скважины.
Эксплуатационная колонна диаметром 146 мм спускается на проектную глубину – на 50 м ниже подошвы эксплуатационного объекта.
В интервале продуктивных отложений, а также башмака кондуктора колонна центрируется.
При толщине перемычки, разделяющей продуктивный и ближайший водоносный горизонты, до 8 м в добывающих и до 12 м в нагнетательных скважинах колонна оборудуется пакером, устанавливаемым в этой перемычке.
Высота подъема тампонажного раствора за эксплуатационной колонной в добывающих скважинах устанавливается на 100 м выше башмака кондуктора, в нагнетательных – до устья. В реальных условиях, учитывая снижение уровня в процессе ОЗЦ, тампонажный раствор должен быть поднят, как минимум, в добывающих скважинах – в башмак кондуктора, в нагнетательных – должна быть перекрыта люлинворская свита.