Фотоэлектрические солнечные электростанции

Автор работы: Пользователь скрыл имя, 17 Февраля 2015 в 19:22, реферат

Описание работы

Солнечная электростанция - инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.
Получение электроэнергии от солнца давно применяется во всем мире. Главной задачей ученых на данный момент является необходимость так усовершенствовать имеющиеся технологии, чтобы как можно больше увеличить их КПД.

Файлы: 1 файл

Реферат.docx

— 251.72 Кб (Скачать файл)

На сегодняшний день сравнительно высокая цена солнечных фотоэлементов. С развитием технологии и ростом цен на ископаемые энергоносители этот недостаток преодолевается. В 1990-2005 гг. цены на фотоэлементы снижались в среднем на 4% в год.

Поверхность фотопанелей и зеркал (для тепломашинных ЭС) нужно очищать от пыли и других загрязнений. В случае крупных фотоэлектрических станций, при их площади в несколько квадратных километров это может вызвать затруднения.

Эффективность фотоэлектрических элементов падает при их нагреве (в основном это касается систем с концентраторами), поэтому возникает необходимость в установке систем охлаждения, обычно водяных. Также в фотоэлектрических преобразователях третьего и четвёртого поколений используют для охлаждения преобразование теплового излучения в излучение наиболее согласованное с поглощающим материалом фотоэлектрического элемента (так называемое up-conversion), что одновременно повышает КПД.

Через 30 лет эксплуатации эффективность фотоэлектрических элементов начинает снижаться. Отработавшие своё фотоэлементы, хотя и незначительная их часть, в основном специального назначения, содержат компонент (кадмий), который недопустимо выбрасывать на свалку. Нужно дополнительное расширение индустрии по их утилизации.

 

4.5 Экологические  проблемы

 

При производстве фотоэлементов уровень загрязнений не превышает допустимого уровня для предприятий микроэлектронной промышленности. Современные фотоэлементы имеют срок службы (30-50 лет). Применение кадмия, связанного в соединениях, при производстве некоторых типов фотоэлементов, с целью повышения эффективности преобразования, ставит сложный вопрос их утилизации, который тоже не имеет пока приемлемого с экологической точки зрения решения, хотя такие элементы имеют незначительное распространение и соединениям кадмия при современном производстве уже найдена достойная замена.

В последнее время активно развивается производство тонкоплёночных фотоэлементов, в составе которых содержится всего около 1 % кремния, по отношению к массе подложки на которую наносятся тонкие плёнки. Из-за малого расхода материалов на поглощающий слой, здесь кремния, тонкоплёночные кремниевые фотоэлементы дешевле в производстве, но пока имеют меньшую эффективность и неустранимую деградацию характеристик во времени. Кроме того, развивается производство тонкоплёночных фотоэлементов на других полупроводниковых материалах, в частности CIS и CIGS, достойных конкурентов кремнию. Так, например, в 2005 г. компания "Shell" приняла решение сконцентрироваться на производстве тонкоплёночных элементов, и продала свой бизнес по производству монокристаллических (нетонкоплёночных) кремниевых фотоэлектрических элементов.

 

 

5. Фотоэлемент

 

Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов.

Полупроводниковые фотоэлектрические преобразователи энергии.

Наиболее эффективными, с энергетической точки зрения, устройствами для превращения солнечной энергии в электрическую являются полупроводниковые фотоэлектрические преобразователи (ФЭП), поскольку это прямой, одноступенчатый переход энергии. При характерной для ФЭП равновесной температуре порядка 300-350 Кельвинов и Тсолнца ~ 6000 К их предельный теоретический КПД < 29 %. В лабораторных условиях уже достигнут КПД 26 %.

 

 

6. Физический принцип  работы солнечных батарей

 

Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.

Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны - энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.

Эффективность преобразования зависит от электрофизических характеристик неоднородной полупроводниковой структуры, а также оптических свойств ФЭП, среди которых наиболее важную роль играет фотопроводимость. Она обусловлена явлениями внутреннего фотоэффекта в полупроводниках при облучении их солнечным светом.

 

 

7. Основные необратимые  потери энергии в ФЭП

 

Основные необратимые потери энергии связаны с:

- отражением солнечного излучения от поверхности преобразователя,

- прохождением части излучения через ФЭП без поглощения в нём,

- рассеянием на тепловых колебаниях решётки избыточной энергии фотонов,

- рекомбинацией образовавшихся фото-пар на поверхностях и в объёме ФЭП,

- внутренним сопротивлением преобразователя,

- и некоторыми другими физическими процессами.

Для уменьшения всех видов потерь энергии в ФЭП разрабатываются и успешно применяется различные мероприятия. К их числу относятся:

- использование полупроводников  с оптимальной для солнечного  излучения шириной запрещённой  зоны;

- направленное улучшение  свойств полупроводниковой структуры  путём её оптимального легирования  и создания встроенных электрических  полей;

- переход от гомогенных  к гетерогенным и варизонным  полупроводниковым структурам;

- оптимизация конструктивных параметров ФЭП (глубины залегания p-n перехода, толщины базового слоя, частоты контактной сетки и др.);

- применение многофункциональных  оптических покрытий, обеспечивающих  просветление, терморегулирование  и защиту ФЭП от космической  радиации;

- разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;

Создание каскадных ФЭП из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;

Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т. д.

 

 

 

 

8. Солнечный коллектор:

 

Солнечный коллектор - устройство для сбора энергии Солнца, переносимой видимым светом и ближним инфракрасным излучением.

 

9. Солнечная термальная  энергетика

 

Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т.д., т.е. без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии. В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии.

В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09-$0,12 за кВт·ч. Департамент Энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04-$0,05 к 2015-2020 г. В 2007 году в Алжире началось строительство гибридных электростанций. В дневное время суток электроэнергия производится параболическими концентраторами, а ночью из природного газа.

 

 

10. Солнечный водонагреватель

 

Солнечный водонагреватель с вакуумным коллектором, наиболее эффективный, хотя и самый дорогой, состоит из двух основных элементов:

- наружного блока - солнечных вакуумных коллекторов;

- внутреннего блока - резервуара-теплообменника.

В вакуумном водонагревателе-коллекторе объем, в котором находится черная поверхность, поглощающая солнечное излучение, отделен от окружающей среды ва куумированным пространством, что позво ляет практически полностью устранять потери теплоты в окружающую среду за счет теплопроводности и конвекции. Потери на излучение в значительной степени подав ляются за счет применения селективного покрытия. Так как полный коэффициент потерь в вакуумном коллекторе мал, теплоноситель в нем можно нагреть до температур 120-160°С.

Существует несколько типов вакуумных солнечных водонагревателей-коллекторов:

 

 

  1. Вакуумный солнечный водонагреватель-коллектор низкого давления (открытый контур) с термосифонной системой

 

  1. Вакуумный солнечный водонагреватель-коллектор магистрального давления, термосифон со встроенным теплообменником.

 

 

 

 

  1. Вакуумный солнечный водонагреватель-коллектор с выносным баком (СВНУ активного типа, закрытый контур)

 

 

 

11. Технологии солнечной энергетики

 

Более чем за полвека ученые перепробовали огромное количество различных вариантов и способов добычи и использования солнечной энергии. Дорогие и малоэффективные технологии уступали место привлекательным и дешевым разработкам, которые не прекращают совершенствоваться на протяжении многих лет.

Классификация «солнечных» технологий, разделенных учеными на 4 группы:

1. Активные – вместе  с преобразователями задействуются  механизмы, электромоторы, помпы. Солнечная  энергия используется для нагрева  воды, освещения, вентиляции.

2. Пассивные – отличаются от активных отсутствием в контурах систем каких-либо механизмов, движущих частей. Особенностью построения пассивных солнечных структур для организации систем вентиляции, отопления является подбор соответствующих по физическим параметрам строительных материалов, специфическая планировка помещения, размещение окон.

3. Непосредственные или  «прямым» - системы, преобразовывающие  солнечную энергию в ходе одного  уровня или этапа.

4. «Непрямые» технологии - системы, процесс функционирования  которых включает в себя многоуровневые  преобразования и трансформации  для получений требуемой формы  энергии.

 

12. Фотоэлементы  для промышленного назначения

 

На солнечных электростанциях (СЭС) можно использовать разные типы ФЭП, однако не все они удовлетворяют комплексу требований к этим системам:

- высокая надёжность при длительном (десятки лет!) ресурсе работы;

- высокая доступность сырья и возможность организации массового производства;

- приемлемые с точки зрения сроков окупаемости затраты на создание системы преобразования;

- минимальные расходы  энергии и массы, связанные с  управлением системой преобразования  и передачи энергии (космос), включая  ориентацию и стабилизацию станции  в целом;

- удобство техобслуживания.

Некоторые перспективные материалы трудно получить в необходимых для создания СЭС количествах из-за ограниченности природных запасов исходного сырья или сложности его переработки. Отдельные методы улучшения энергетических и эксплуатационных характеристик ФЭП, например за счёт создания сложных структур, плохо совместимы с возможностями организации их массового производства при низкой стоимости и т. д.

Высокая производительность может быть достигнута лишь при организации полностью автоматизированного производства ФЭП, например на основе ленточной технологии, и создании развитой сети специализированных предприятий соответствующего профиля, то есть фактически целой отрасли промышленности, соизмеримой по масштабам с современной радиоэлектронной промышленностью. Изготовление фотоэлементов и сборка солнечных батарей на автоматизированных линиях обеспечит многократное снижение себестоимости батареи.

 

12.1 Типы фотоэлектрических  элементов

 

- Монокристаллические кремниевые

- Поликристаллические кремниевые

- Тонкоплёночные

В 2005 г. на тонкоплёночные фотоэлементы приходилось 6% рынка. В 2006 г. тонкоплёночные фотоэлементы занимали 7% долю рынка. В 2007 г. доля тонкоплёночных технологий увеличилась до 8%.

За период с 1999 г. по 2006 г. поставки тонкоплёночных фотоэлементов росли ежегодно в среднем на 80%.

 

 

 

 

12.2 Минимальные  цены на фотоэлементы (начало 2007 г.):

 

- Монокристаллические кремниевые - 4,30$/Вт установленной мощности.

- Поликристаллические кремниевые - 4,31$/Вт установленной мощности.

- Тонкоплёночные - 3,0$/Вт установленной мощности.

Стоимость кристаллических фотоэлементов на 40-50% состоит из стоимости кремния.

 

12.3 Итоги развития  фотоэлементной отрасли

Информация о работе Фотоэлектрические солнечные электростанции