Автор работы: Пользователь скрыл имя, 17 Февраля 2015 в 19:22, реферат
Солнечная электростанция - инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.
Получение электроэнергии от солнца давно применяется во всем мире. Главной задачей ученых на данный момент является необходимость так усовершенствовать имеющиеся технологии, чтобы как можно больше увеличить их КПД.
Введение
Солнечная электростанция - инженерное сооружение, служащее преобразованию солнечной радиации в электрическую энергию. Способы преобразования солнечной радиации различны и зависят от конструкции электростанции.
Получение электроэнергии от солнца давно применяется во всем мире. Главной задачей ученых на данный момент является необходимость так усовершенствовать имеющиеся технологии, чтобы как можно больше увеличить их КПД.
Солнечные электростанции преобразуют энергию солнечной радиации в электроэнергию. Они бывают двух видов:
1. фотоэлектрические - непосредственно преобразуют солнечную энергию в электроэнергию при помощи фотоэлектрического генератора.
2. термодинамические - преобразуют солнечную энергию в тепловую, а потом в электрическую; мощность термодинамических солнечных электростанций выше, чем мощность фотоэлектрических станций
1. Фотоэлектрические солнечные электростанции
Главным элементом фотоэлектрических станций являются солнечные батареи. Они состоят из тонких пленок кремния или других полупроводниковых материалов и могут преобразовывать солнечную энергию в постоянный электрический ток.
Фотоэлектрические преобразователи отличаются надежностью, стабильностью, а срок их службы практически не ограничен. Они могут преобразовывать как прямой, так и рассеянный солнечный свет. Небольшая масса, простота обслуживания, модульный тип конструкции позволяет создавать установки любой мощности. К недостаткам солнечных батарей можно отнести высокую стоимость и низкий КПД.
Солнечные батареи используют для энергоснабжения автономных потребителей малой мощности, питания радионавигационной и маломощной радиоэлектронной аппаратуры, привода экспериментальных электромобилей и самолётов. Есть надежда, что в будущем им найдут применение в отоплении и электроснабжении жилых домов.
2. Термодинамические солнечные электростанции
В устройстве термодинамических солнечных электростанций используют теплообменные элементы с селективным светопоглощающим покрытием. Они способны поглощать до 97% попадающего на них солнечного света. Эти элементы даже за счет обычного солнечного освещения могут нагреваться до 200°С и более. С помощью них воду превращают в пар в обычных паровых котлах, что позволяет получить эффективный термодинамический цикл в паровой турбине. КПД солнечной паротурбинной установки может достигать 20%.
На основе этого эффекта была разработана конструкция аэростатной солнечной электростанции. Источником энергии в ней является баллон аэростата, заполненный водяным паром. Внешняя часть баллона пропускает солнечные лучи, а внутренняя покрыта селективным светопоглощающим покрытием, и позволяет нагревать содержимое баллона до 150-180°С. Полученный внутри пар будет иметь температуру 130-150°С, а давление такое же как атмосферное. Распыляя воду внутри баллона с перегретым паром, получают генерацию пара.
Пар из баллона отводится в паровую турбину посредством гибкого паропровода, а на выходе из турбины превращается в конденсаторе в воду. Из него воду с помощью насоса подают обратно в баллон. За счет пара накопленного за день, такая электростанция может работать и ночью. В течение суток мощность турбогенератора можно регулировать в соответствии с потребностями.
Главной проблемой является способ размещения солнечных аэростатных электростанций. Такие электростанции можно размещать над землей, над морем или в горах. В каждом случае есть свои плюсы и минусы. Здесь необходимо все учитывать и длину паропровода, и место размещения турбогенератора, и то, чтобы баллоны не мешали движению самолетов
Существуют и другие способы получения энергии от солнца, и если удастся решить все проблемы, то спрос на такую продукцию может быть практически неограничен. С помощью новых разработок можно будет решить проблемы энергоснабжения отсталых труднодоступных районов, сократить потребление топливных ресурсов в больших мегаполисах, защитить окружающую среду от излишнего загрязнения выбросами вредных веществ.
3. Типы солнечных электростанций
Все солнечные электростанции (сэс) подразделяют на несколько типов:
- СЭС башенного типа
- СЭС тарельчатого типа
- СЭС, использующие фотобатареи
- СЭС, использующие параболические концентраторы
- Комбинированные СЭС
- Аэростатные солнечные электростанции
3.1 СЭС башенного типа
Данные электростанции основаны на принципе получения водяного пара с использованием солнечной радиации. В центре станции стоит башня высотой от 18 до 24 метров (в зависимости от мощности и некоторых других параметров высота может быть больше либо меньше), на вершине которой находится резервуар с водой. Этот резервуар покрыт чёрным цветом для поглощения теплового излучения. Также в этой башне находится насосная группа, доставляющая пар на турбогенератор, который находится вне башни. По кругу от башни на некотором расстоянии располагаются гелиостаты. Гелиостат - зеркало площадью в несколько квадратных метров, закреплённое на опоре и подключённое к общей системе позиционирования. То есть, в зависимости от положения солнца, зеркало будет менять свою ориентацию в пространстве. Основная и самая трудоемкая задача - это позиционирование всех зеркал станции так, чтобы в любой момент времени все отраженные лучи от них попали на резервуар. В ясную солнечную погоду температура в резервуаре может достигать 700 градусов. Такие температурные параметры используются на большинстве традиционных тепловых электростанций, поэтому для получения энергии используются стандартные турбины. Фактически на станциях такого типа можно получить сравнительно большой КПД (около 20%) и высокие мощности.
Пример: Построена в 2007 СЭС в Крыму
В Крыму была построена СЭС такого же типа в Щёлкино как резервный источник электричества для планируемой там АЭС. Но по большому счету, эта станция была экспериментальной: ее мощность 5 МВт. При эксплуатации этой станции было выявлено множество трудностей. Одна из них - система позиционирования отражателей практически полностью (95) расходовала энергию, вырабатываемую станцией [источник?]. Также возникали трудности с очисткой зеркал. Вскоре эта станция прекратила своё существование и была разворована.
3.2 СЭС тарельчатого типа
Данный тип СЭС использует принцип получения электроэнергии, схожий с таковым у Башенных СЭС, но есть отличия в конструкции самой станции. Станция состоит из отдельных модулей. Модуль состоит из опоры, на которую крепится ферменная конструкция приемника и отражателя. Приемник находится на некотором удалении от отражателя, и в нем концентрируются отраженные лучи солнца. Отражатель состоит из зеркал в форме тарелок (отсюда название), радиально расположенных на ферме. Диаметры этих зеркал достигают 2 метров, а количество зеркал - нескольких десятков (в зависимости от мощности модуля). Такие станции могут состоять как из одного модуля (автономные), так и из нескольких десятков (работа параллельно с сетью).
3.3 СЭС, использующие фотобатареи
СЭС этого типа в настоящее время очень распространены, так как в общем случае СЭС состоит из большого числа отдельных модулей (фотобатарей) различной мощности и выходных параметров. Данные СЭС широко применяются для энергообеспечения как малых, так и крупных объектов (частные коттеджи, пансионаты, санатории, промышленные здания и т. д.). Устанавливаться фотобатареи могут практически везде, начиная от кровли и фасада здания и заканчивая специально выделенными территориями. Установленные мощности тоже колеблются в широком диапазоне, начиная от снабжения отдельных насосов, заканчивая электроснабжением небольшого посёлка.
3.4 СЭС, использующие параболические концентраторы
Принцип работы данных СЭС заключается в нагревании теплоносителя до параметров, пригодных к использованию в турбогенераторе.
Конструкция СЭС: на ферменной конструкции устанавливается параболическое зеркало большой длины, а в фокусе параболы устанавливается трубка, по которой течет теплоноситель (чаще всего масло). Пройдя весь путь, теплоноситель разогревается и в теплообменных аппаратах отдаёт теплоту воде, которая превращается в пар и поступает на турбогенератор.
3.5 Комбинированные СЭС
Часто на СЭС различных типов дополнительно устанавливают теплообменные аппараты для получения горячей воды, которая используется как для технических нужд, так и для горячего водоснабжения и отопления. В этом и состоит суть комбинированных СЭС. Также на одной территории возможна параллельная установка концентраторов и фотобатарей, что тоже считается комбинированной СЭС.
4. Солнечная энергетика
Непосредственное использование солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии является экологически чистой, то есть не производящей вредных отходов. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии.
4.1 Достоинства солнечной энергетики
Общедоступность и неисчерпаемость источника
Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).
4.2 Способы получения
электричества и тепла из
Получение электроэнергии с помощью фотоэлементов.
Преобразование солнечной энергии в электричество с помощью тепловых машин:
- паровые машины (поршневые или турбинные), использующие водяной пар, углекислый газ, пропан-бутан, фреоны;
- двигатель Стирлинга и т.д.
- гелиотермальная энергетика
- нагревание поверхности, поглощающей солнечные лучи и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой для последующего использования нагретой воды в отоплении или в паровых электрогенераторах).
- термовоздушные электростанции (преобразование солнечной энергии в энергию воздушного потока, направляемого на турбогенератор).
- солнечные аэростатные электростанции (генерация водяного пара внутри баллона аэростата за счет нагрева солнечным излучением поверхности аэростата, покрытой селективно-поглощающим покрытием). Преимущество - запаса пара в баллоне достаточно для работы электростанции в темное время суток и в ненастную погоду.
4.3 Фундаментальные
исследования в солнечной
Из-за теоретических ограничений в преобразовании спектра в полезную энергию (около 30%) для фотоэлементов первого и второго поколения требуется использование больших площадей земли под электростанции.
Например, для электростанции мощностью 1 ГВт это может быть несколько десятков квадратных километров (для сравнения: гидроэнергетика, при таких же мощностях, выводит из пользования заметно большие участки земли), но строительство солнечных электростанций такой мощности может привести к изменению микроклимата в прилегающей местности и поэтому в основном устанавливаются фотоэлектрические станции мощностью 1-2 МВт недалеко от потребителя или даже индивидуальные и мобильные установки. Фотоэлектрические элементы на крупных солнечных электростанциях устанавливаются на высоте 1,8-2,5 метра, что позволяет использовать земли под электростанцией для сельскохозяйственных нужд, например, для выпаса скота. Проблема нахождения больших площадей земли под солнечные электростанции решается в случае применения солнечных аэростатных электростанций, пригодных как для наземного, так и для морского и для высотного базирования.
Поток солнечной энергии, падающий на установленный под оптимальным углом фотоэлемент, зависит от широты, сезона и климата и может различаться в два раза для заселённой части суши (до трёх с учётом пустыни Сахары). Атмосферные явления (облака, туман, пыль и др.) не только изменяют спектр и интенсивность падающего на поверхность Земли солнечного излучения, но и изменяют соотношение между прямым и рассеянным излучениями, что оказывает значительное влияние на некоторые типы солнечных электростанций, например, с концентраторами или на элементах широкого спектра преобразования.
4.4 Прикладные исследования
Фотоэлектрические преобразователи работают днём и с меньшей эффективностью работают в утренних и вечерних сумерках. При этом пик электропотребления приходится именно на вечерние часы. Кроме того, производимая ими электроэнергия может резко и неожиданно колебаться из-за смены погоды. Для преодоления этих недостатков на солнечных электростанциях используются эффективные электрические аккумуляторы (на сегодняшний день это не достаточно решённая проблема), либо преобразуют в другие виды энергии, например, строят гидроаккумулирующие станции, которые занимают большую территорию, или концепцию водородной энергетики, которая на сегодняшний день пока недостаточно экономически эффективна. На сегодняшний день эта проблема просто решается созданием единых энергетических систем, которые перераспределяют вырабатываемую и потребляемую мощность. Проблема некоторой зависимости мощности солнечной электростанции от времени суток и погодных условий решается также с помощью солнечных аэростатных электростанций.
Информация о работе Фотоэлектрические солнечные электростанции