Волновые и корпускулярные свойства материальных объектов

Автор работы: Пользователь скрыл имя, 18 Января 2010 в 06:18, Не определен

Описание работы

Одним из наиболее важных и существенных вопросов как философии, так и естествознания является проблема материи. Представления о строении материи находят свое выражение в борьбе двух концепций: прерывности (дискретности) — корпускулярная концепция, и непрерывности (континуальности) — континуальная концепция. С ними тесно связаны проблемы взаимодействия материальных объектов, которые проявлялись как концепция дальнодействия (передача действия без физической среды) и концепция близкодействия (передача действия от точки к точке

Файлы: 1 файл

контрольная по ксе.doc

— 150.00 Кб (Скачать файл)

Введение 

     Одним из наиболее важных и существенных вопросов как философии, так и  естествознания является проблема материи. Представления о строении материи  находят свое выражение в борьбе двух концепций: прерывности (дискретности) — корпускулярная концепция, и непрерывности (континуальности) — континуальная концепция. С ними тесно связаны проблемы взаимодействия материальных объектов, которые проявлялись как концепция дальнодействия (передача действия без физической среды) и концепция близкодействия (передача действия от точки к точке).

       Концепция прерывности была создана  И. Ньютоном Подход Ньютона  определил исходное положение  атомизма, который основывался на  признании дальнодействующих сил.

     В истории физики наиболее плодотворной и важной для понимания явлений природы была концепция атомизма, согласно которой материя имеет прерывистое, дискретное строение, т. е. состоит из мельчайших частиц — атомов. До конца XIX в. в соответствии с концепцией атомизма считалось, что материя состоит из отдельных неделимых частиц — атомов. С точки зрения современного атомизма, электроны — "атомы" электричества, фотоны —"атомы" света и т. д.

     Концепция атомизма, впервые предложенная древнегреческим  философом Левкиппом в V в. до н. э., развитая его учеником Демокритом и  затем древнегреческим философом-материалистом Эпикуром (341—270 до н. э.) из апечатленная в замечательной поэме "О природе вещей" римского поэта и философа Лукреция Кара (I в. до н. э.), вплоть до нашего столетия оставалось умозрительной гипотезой, хотя и подтверждаемой косвенно некоторыми экспериментальными доказательствами (например, броуновским движением, законом Авогадро и др.).

     Многие  ведущие физики и химики даже в  конце XIX в. не верили в реальность существования  атомов. К тому же многие экспериментальные  результаты химии и рассчитанные в соответствии с кинетической теорией газов данные утверждали другое понятие для мельчайших частиц — молекулы.

     Реальное  существование молекул было окончательно подтверждено в 1906 г. опытами французского физика Жана Перрена (1870—1942) по изучению закономерностей броуновского Движения. В современном представлении молекула —наименьшая частица вещества, обладающая его основными химическими свойствами и состоящая из атомов, соединенных между собой химическими связями. Число атомов в молекуле составляет от двух (Н2, О2, НF, КСI) до сотен и тысяч (некоторые витамины, гормоны и белки). Атомы инертных газов часто называют одноатомными молекулами. Если молекула состоит из тысяч и более повторяющихся единиц(одинаковых или близких по строению групп атомов), ее называют макромолекулой.

     Атом  — составная часть молекулы, в  переводе с греческого означает "неделимый". Действительно, вплоть до конца XIX в.неделимость  атома не вызывала серьезных возражений. Однако физические опыты конца XIX и  начала XX столетий не только подвергли сомнению неделимость атома, но и доказали существование его структуры. В своих опытах в 1897 г. английский физик Джозеф Джон Томсон (1856—1940) открыл электрон, названный позднее атомом электричества. Электрон, как хорошо известно, входит в состав электронной оболочки атомов. В 1898 г. Томсон определил заряд электрона, а в 1903 г.предложил одну из первых моделей атома.

          Проблема определения сущности материи весьма сложна. Сложность заключается в высокой степени абстрактности самого понятия материи, а также в многообразии различных материальных объектов, форм материи, ее свойств и взаимообусловленностей. В связи с этим перед философией и другими науками стоит множество вопросов: Что такое материя? Как развивались представления о ней? Как соотнести с понятием материи бесконечное множество конкретных предметов, вещей? Какими свойствами она обладает? Вечна ли и бесконечна материя? Что является причиной ее изменения? Какие виды материи известны в настоящее время? Как осуществляется взаимный переход одних видов материи и форм ее движения в другие? На основе каких законов это происходит? Наконец, каким образом возникло такое свойство материи, как сознание? Обращая свое внимание на окружающий нас мир, мы видим совокупность разнообразных предметов, вещей. Эти предметы обладают самыми различными свойствами. Одни из них имеют большие размеры, другие - меньшие, одни просты, другие - более сложны, одни постигаемы достаточно полно непосредственно чувственным образом, для проникновения в сущность других необходима абстрагирующая деятельность нашего разума. Отличаются эти предметы и по силе своего воздействия на наши органы чувств. Однако при всей своей многочисленности и разнообразии самые различные предметы окружающего нас мира имеют один общий, если так можно выразиться, знаменатель, позволяющий объединить их понятием материи. Это общее есть независимость всего многообразия предметов от сознания людей. В то же время это общее в бытии различных материальных образований является предпосылкой единства мира. Однако заметить общее в самых различных предметах, явлениях, процессах - задача далеко не простая. Для этого нужна определенная система сложившихся знаний и развитая способность к абстрагирующей деятельности человеческого разума. Поскольку знания есть продукт приобретенный, причем накапливаемый постепенно, в течение длительного времени, то многие суждения людей о природе и обществе первоначально носили весьма неотчетливый, приближенный, а порой и просто неверный характер. В полной мере это относится и к определению категории материи. 

 

Становление и развитие общих  представлений о  материи 

Самый беглый анализ представлений древних  ученых о материи показывает, что все они по духу своему были материалистическими, но общим их недостатком было, во-первых, сведение понятия материи к какому-то конкретному виду вещества или ряду веществ. Во-вторых, признание материи в качестве строительного материала, некоей первичной неизменной субстанции автоматически исключало выход за пределы имеющихся о ней представлений. Тем самым каким-либо конкретным видом вещества с присущими ему свойствами ограничивалось дальнейшее познание, проникновение в сущность материи. Все же большой заслугой древних материалистов было изгнание представлений о боге-творце и признание взаимосвязи материи и движения, а также вечности их существования. Заметный след в развитии учения о материи оставили мыслители Древней Греции Левкипп и особенно Демокрит - родоначальники атомистического учения об окружающем мире. Они впервые высказали мысыль о том, что все предметы состоят из мельчайших неделимых частиц - атомов. Первичная субстанция – атомы движутся в пустоте, и их различные сочетания суть те или иные материальные образования. Уничтожение вещей, по Демокриту, означает лишь их разложение на атомы. В самом понятии атома содержится нечто общее, присущее различным телам. Вместе с тем, хотя атомистическое учение и устанавливало общую природу бытия микропредметов, однако оно не раскрывало в полной мере понятия материи; в силу своей субстанциональности и ограниченности оно не могло служить критерием общности всего многообразия видов материи. В настоящее время мы знаем, что атомы различны по своей природе и структуре и представляют лишь частицы вещества. Таким образом, у Демокрита мы видим отождествление понятия материи с одним из конкретных ее проявлений, с веществом. Весьма важную попытку дать определение материи сделал французский материалист XVIII века Гольбах, который в работе "Система природы" писал, что "по отношению к нам материя вообще есть все то, что воздействует каким-нибудь образом на наши чувства". Здесь мы видим стремление выделить то общее в различных формах материи, а именно: что они вызывают у нас ощущения. В этом определении Гольбах уже отвлекается от конкретных свойств предметов и дает представление о материи как абстракции. Вместе с тем определение Гольбаха было ограниченным. Оно не раскрывало до конца сущности всего того , что воздействует на наши органы чувств, оно не раскрывало специфики того, что не может воздействовать на наши чувства. Эта незавершенность предложенного Гольбахом определения материи создавала возможности как для материалистической, так и идеалистической ее трактовки. К концу прошлого века естествознание, и в частности физика, достигло достаточно высокого уровня своего развития. Были открыты общие и, казалось, незыблемые принципы строения мира. Была открыта клетка, сформулирован закон сохранения и превращения энергии, установлен Дарвиным эволюционный путь развития живой природы, Менделеевым создана периодическая система элементов. Основой бытия всех людей, предметов признавались атомы - мельчайшие, с точки зрения того времени, неделимые частицы вещества. Понятие материи отождествлялось, таким образом, с понятием вещества, масса характеризовалась как мера количества вещества или мера количества материи. Материя рассматривалась вне связи с пространством и временем. Благодаря работам Фарадея, а затем Максвелла, были установлены законы движения электромагнитного поля и электромагнитная природа света. При этом распространение электромагнитных волн связывалось с механическими колебаниями гипотетической среды - эфира. Физики с удовлетворением отмечали: наконец-то, картина мира создана, окружающие нас явления укладываются в предначертанные им рамки. Оценивая в целом представления классической физики XIX в, о строении и свойствах материи, отметим, что они страдали теми же недостатками, что и учения древних. Точка зрения на материю как на первичную, неизменную субстанцию и отождествление ее при этом с веществом содержали в себе предпосылки возможности критических ситуаций в физике. И это не замедлило сказаться. На благополучном, казалось, фоне "стройной теории" вдруг последовала целая серия необъяснимых в рамках классической физики научных открытий. В 1896 г. были открыты рентгеновские лучи. В 1896 г. Беккерель случайно обнаружил радиоактивность урана, в этом же году супруги Кюри открывают радий. Томсоном в 1897 г. открыт электрон, а в 19О1 г. Кауфманом показана изменчивость массы электрона при его движении в электромагнитном поле. Наш соотечественник Лебедев обнаруживает световое давление, тем самым окончательно утверждая материальность электромагнитного поля. В начале ХХ в. Планком, Лоренцом, Пуанкаре и др. закладываются основы квантовой механики, и, наконец, в 19О5 г. Эйнштейном создается специальная теория относительности. Многие физики того периода, мыслящие метафизически, не смогли понять сути этих открытий. Вера в незыблемость основных принципов классической физики привела их к скатыванию с материалистических позиций в сторону идеализма. Логика их рассуждений была такова. Атом - мельчайшая частица вещества. Атом обладает свойствами неделимости, непроницаемости, постоянства массы, нейтральности в отношении заряда. И вдруг оказывается, что атом распадается на какие-то частицы, которые по своим свойствам противоположны свойствам атома. Так, например, электрон имеет изменчивую массу, заряд и т.д. Это коренное отличие свойств электрона и атома привело к мысли, что электрон нематериален. А поскольку с понятием атома, вещества отождествлялось понятие материи, а атом исчезал, то отсюда следовал вывод: "материя исчезла". С другой стороны, изменчивость массы электрона, под которой понималось количество вещества, стала трактоваться как превращение материи в "ничто". Таким образом, рушился один из главнейших принципов материализма – принцип неуничтожимости и несотворимости материи. Диалектико-материалистическое определение материи направлено против отождествления понятия материи с ее конкретными видами и свойствами. Тем самым оно допускает возможность существования, а значит, и открытия в будущем новых неизвестных, "диковинных" видов материи. Следует сказать, что в последние годы физики и философы все настойчивее предсказывают такую возможность. 

Волновые  и корпускулярные свойства материальных объектов.

            Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств, материальный объект состоит из мельчайших частиц (электронов, протонов, нейтронов, атомов, и т.д.) является то, что им присущи как волновые, так и корпускулярные свойства.

           Всем микрообъектам присущи и волновые, и корпускулярные свойства, однако, они не являются ни волной, ни частицей в классическом понимании. Разные свойства микрообъектов не проявляются одновременно, они дополняют друг друга, только их совокупность характеризует микрообъект полностью. В этом заключается сформулированный знаменитым датским физиком Н. Бором принцип дополнительности. Можно условно сказать, что микрообъекты распространяются как волны, а обмениваются энергией как частицы.

           С точки зрения волновой теории, максимумы в картине дифракции электронов соответствуют наибольшей интенсивности волн де Бройля. В области максимумов, зарегистрированных на фотопластинке, попадает большое число электронов. Но процесс попадания электронов в различные места на фотопластинке не индивидуален. Принципиально невозможно предсказать, куда попадет очередной электрон после рассеяния, существует лишь определенная вероятность попадания электрона в то или иное место. Таким образом, описание состояния микрообъекта и его поведения может быть дано только на основе понятия вероятности. 

           Наличие волновых свойств у  движущихся объектов, обладающих  массой покоя, является универсальным  явлением, не связанным со свойствами частицы. Волновые свойства частицы определяются длиной волны де Бройля. 
 

Волны де Бройля 

В 1924 г. произошло одно из величайших событий  в истории физики: французский  физик Л. де Бройль выдвинул идею о  волновых свойствах материи. В своей  работе «Свет и материя» он писал о необходимости использовать волновые и корпускулярные представления не только в соответствии с учением А. Эйнштейна в теории света, но также и в теории материи.

Л. де Бройль утверждал, что волновые свойства, наряду с корпускулярными, присущи всем видам материи: электронам, протонам, атомам, молекулам и даже макроскопическим телам. Частица с энергией E и импульсом, абсолютная величина которого равна p, может быть сопоставлена с волной, дебройлевская длина волны которой

Согласно  гипотезе де Бройля, условие квантования орбит в атоме водорода mvr = nh/(2 p ) при разных n означает, что (в простейшем случае) на длине окружности орбиты укладывается целое число дебройлевских волн. В этом случае атом водорода находится в стационарном состоянии с определенной энергией.

Если  гипотеза де Бройля верна, то частицы  вещества должны при определенных условиях проявлять свойства, характерные  только для волн, например, демонстрировать  интерференцию и дифракцию на препятствии.

Ввиду достаточно большой величины импульса электрона в атоме, соответствующая длина волны де Бройля для электронов очень мала. Так, для электрона на первой боровской орбите l  = 0,4 нм, т.е. порядка величины расстояния между атомами в кристаллической решетке. Волновые свойства электрона, если они действительно есть, могут наблюдаться только в случае, когда размеры препятствий сравнимы с длиной волны.

В то же время для макроскопического  тела (допустим, теннисного мяча, летящего со скоростью 25 м/с) длина волны де Бройля ничтожно мала, ~ 10 -34  м, что на 24 порядка меньше размера атома! Таким образом, волновые свойства макроскопических тел наблюдаться не могут.

Однако  гипотеза де Бройля нуждалась в опытном  подтверждении. Наиболее убедительным свидетельством существования волновых свойств материи стало обнаружение в 1927 г. дифракции электронов американскими физиками К. Дэвисоном и Л. Джермером. Они убедительно подтвердили волновую природу электронов. Пучок электронов ускорялся в электрическом поле, проходя разность потенциалов U. При этом электроны приобретали кинетическую энергию mv 2 /2 = eU, т.е. импульс p = mv = (2meU) 1/2 .

Затем пучок электронов направлялся на мишень, состоявшую из сравнительно крупных  кристаллов никеля. Подвижный детектор измерял количество электронов, рассеянных под разными углами. Возникшая картина полностью соответствовала картине рассеяния рентгеновских лучей на кристалле. Пользуясь условием Брэгга, Дэвиссон и Джермер определили длину волны электронов l  = h/p и сравнили с вычислениями, основанными на гипотезе де Бройля, получив прекрасное согласие.

Вывод: при определенных условиях электрон и другие микрочастицы проявляют  волновые свойства.

Корпускулярно-волновой дуализм в современной физике стал всеобщим. Любой материальный объект характеризуется наличием как корпускулярных, так и волновых свойств.

Информация о работе Волновые и корпускулярные свойства материальных объектов