Устройство ядерного реактора

Автор работы: Пользователь скрыл имя, 07 Ноября 2010 в 13:31, Не определен

Описание работы

Курсовая работа

Файлы: 1 файл

Курсовой ТОПТ Устройство ядерного реактора.doc

— 238.50 Кб (Скачать файл)

    2.2. Классификация ядерных  реакторов 

    По  назначению и мощности ядерные реакторы делятся на несколько групп:

    1) экспериментальный реактор (критическая сборка), предназначенный для изучения различных физических величин, значение которых необходимо для проектирования и эксплуатации ядерных реакторов: мощность таких ядерных реакторов не превышает нескольких квт:

    2) исследовательские реакторы, в которых потоки нейтронов и g-квантов, генерируемые в активной зоне, используются для исследований в области ядерной физики, физики твёрдого тела, радиационной химии, биологии, для испытания материалов, предназначенных для работы в интенсивных нейтронных потоках (в т. ч. деталей ядерного реактора), для производства изотопов. Мощность исследовательского ядерного реактора не превосходит 100 Мвт: выделяющаяся энергия, как правило, не используется. К исследовательским ядерным реакторам относится импульсный реактор:

    3) изотопные ядерные реакторы, в которых потоки нейтронов используются для получения изотопов, в т. ч. Pu и 3Н для военных целей;

    4) энергетические ядерные реакторы, в которых энергия, выделяющаяся при делении ядер, используется для выработки электроэнергии, теплофикации, опреснения морской воды, в силовых установках на кораблях и т. д. Мощность (тепловая) современного энергетического ядерного реактора достигает 3-5 Гвт.

    Ядерные реакторы могут различаться также  по виду ядерного топлива (естественный уран, слабо обогащённый, чистый делящийся изотоп), по его химическому составу (металлический U, UO2, UC и т. д.), по виду теплоносителя (Н2О, газ, D2O, органические жидкости, расплавленный металл), по роду замедлителя (С, Н2О, D2O, Be, BeO. гидриды металлов, без замедлителя). Наиболее распространены гетерогенные Ядерный реактор на тепловых нейтронах с замедлителями — Н2О, С, D2O и теплоносителями — Н2О, газ, D2O. 

2.3. Ядерный реактор  в подкритическом  режиме как усилитель  энергии 

     Представим  себе, что мы собрали атомный реактор, имеющий эффективный коэффициент размножения нейтронов kэф немного меньше единицы. Облучим это устройство постоянным внешним потоком нейтронов N0. Тогда каждый нейтрон (за вычетом вылетевших наружу и поглощённых, что учтено в kэф) вызовет деление, которое даст дополнительный поток N0k2эф. Каждый нейтрон из этого числа снова произведёт в среднем kэф нейтронов, что даст дополнительный поток N0kэф и т.д. Таким образом, суммарный поток нейтронов, дающих процессы деления, оказывается равным

                                N = N0 ( 1 + kэф + k2эф + k3эф + ...) = N0 kn эф .

Если  kэф > 1, ряд в этой формуле расходится, что и является отражением критического поведения процесса в этом случае. Если же kэф < 1, ряд благополучно сходится и по формуле суммы геометрической прогрессии имеем

                                                          

Выделение энергии в единицу времени ( мощность ) тогда определяется выделением энергии  в процессе деления,

                                                  

где к <1 - коэффициент, равный отношению числа  нейтронов, вызвавших деление, к  полному их числу. Этот коэффициент  зависит от конструкции установки, используемых материалов и т.д. Он надёжно вычисляется. В примерах  k=0,6. Осталось выяснить, как можно получить первоначальный поток нейтронов N0. Для этого можно использовать ускоритель, дающий достаточно интенсивный поток протонов или других частиц, которые, реагируя с некоторой мишенью, порождают большое кол-во нейтронов. Действительно, например, при столкновении с массивной свинцовой мишенью каждый протон, ускоренный до энергии 1ГэВ ( 109 эВ ), производит в результате развития ядерного каскада в среднем n = 22 нейтрона. Энергии их составляют несколько мега электрон -вольт, что как раз соответствует работе реактора на быстрых

нейтронах. Удобно представить поток нейтронов  через ток ускорителя

                                                            

где е- заряд протонов, равный элементарному электрическому заряду. Когда мы выражаем энергию в электрон-вольт, это значит, что мы берём представление Е = еV, где V- соответствующий этой энергии потенциал, содержащий столько вольт, сколько электрон-вольт содержит энергия. Это значит, что с учётом предыдущей формулы можно переписать формулу выделения энергии в виде 

Наконец удобно представить мощность установки  в виде

                        

где V- потенциал, соответствующий энергии ускорителя, так что VI по известной формуле есть мощность пучка ускорителя: P0 = VI, а R0 в предыдущей формуле есть коэффициент для kэф = 0,98,что обеспечивает надёжный запас подкритичности. Все остальные величины известны, и для энергии протонного ускорителя 1 ГэВ имеем . Мы получили коэффициент усиления 120, что, разумеется, очень хорошо. Однако коэффициент предыдущей формулы соответствует идеальному случаю, когда полностью отсутствуют потери энергии и в ускорителе, и при производстве электроэнергии. Для получения реального коэффициента нужно умножить предыдущую формулу на эффективность ускорителя rу и КПД тепловой электростанции rэ. Тогда R=ryrэR0. Эффективность ускорения может быть достаточно высокой, например в реальном проекте сильноточного циклотрона на энергию 1ГэВ   ry = 0,43. Эффективность производства электроэнергии может составлять 0,42. Окончательно реальный коэффициент усиления R = ry rэ R0 = 21,8, что по-прежнему вполне хорошо, потому что всего 4,6% производимой установкой энергии нужно возвращать для поддержания работы ускорителя. При этом реактор работает только при включенном ускорителе и никакой опасности неконтролируемой цепной реакции не существует. 

 

2.4. Воспроизводство  топлива 

     Для производства энергии в подкритическом режиме требуется хорошо делящийся  изотоп. Обычно рассматриваются три  возможности 239Pu,235U,233U. Очень интересным оказывается последний вариант, связанный с 233U. Этот изотоп может воспроизводиться в реакторе при облучении интенсивным потоком нейтронов, а это и есть непременное условие роботы реактора в подкритическом режиме. Действительно, представим себе, что реактор заполнен природного тория 232Th и 233U. Тогда при облучения реактора нейтронами, полученными с помощью ускорителя, как описано в предыдущем разделе, идут два основных процесса: во-первых, при попадании нейтронов в 233U происходит деление, которое и является  источником энергии, и, во-вторых,  при захвате нейтрона ядром 232Th идёт цепочка реакций.

                        232Th+n        ( )233Th            ( )233Pa            ( )233U

     Каждая  реакция деления приводит к убыли  одного ядра  233U, а каждая предыдущая реакция приводит к появлению такого ядра. Если сравниваются вероятности процесса деления и предыдущего процесса, то кол-во 233U при работе реактора остаётся постоянной, то есть топливо воспроизводится автоматически. Вероятности процесса определяются их эффективными сечениями согласно формуле определения числа событий N. Из этой формулы мы получаем условия стабильной работы реактора с постоянным содержанием 233U:  n(232Th) (232Th)=n(233U) (233U)

где n(.) - плотность ядер соответствующего изотопа. Сечение деления   (233U) = 2,784 барн приведено выше, а сечение захвата нейтрона торием при тех же энергиях   (232Th) = 0,387 барн. Отсюда получаем отношение концентраций 233U и 232Th

                                              

     Таким образом, если мы в качестве рабочего вещества выберем смесь из 88% природного тория и 12% изотопа 233U, то такой состав, будет длительное время сохраняться при работе реактора. Положение изменится после, того, как будет выработано достаточно большое кол-во тория. После этого нужно производить смену рабочего вещества, но 233U следует выделить из отработанного вещества и использовать в следующей загрузке. Оценим время, которое может проработать реактор при одной загрузке. Возьмём в качестве примера параметры установки, предлагаемые группой проф. К. Руббиа Здесь ток ускорителя 12,5 мА при энергии 1 ГэВ и исходная масса топлива 28,41 т. Топливо состоит из Окислов ThO2 и 233UO2. Исходное кол-во ядер 232Th 5,58 1028. При приведённом значении тока производится 1,72 1018 нейтронов в секунду. В силу соотношения N=N0nl  эф половина нейтронов захватывается торием, это соответствует 2,7  1025 захватов в год. Отсюда делается заключение, что при времени работы на одной загрузке порядка нескольких лет будет выработано менее 1% всего кол-ва тория. В проекте принята периодичность замены топлива 5 лет.

     Необходимо  отметить, что продукты деления  233U, представляющие большую радиационную опасность, с большой вероятностью участвуют в

реакциях  с нейтронами, в результате которых наиболее опасные продукты

деления со средним временем жизни пережигаются, то есть либо переходят в устойчивые изотопы, либо, наоборот, в очень  нестабильные, которые быстро распадаются. Таким образом, отпадает необходимость  геологического хранения отходов работы атомной электростанции. Это ещё одно несомненное преимущество подкритического режима работы ядерного реактора. При этом, разумеется, часть потока нейтронов расходуется на пережигание отходов, что несколько понижает коэффициент усиления

R = ryrэR0= 21,8. Однако эти затраты, вне всякого сомнения, оправданны. 

 

     

    1. Факторы опасности ядерных  реакторов. Условия  безопасности на атомных  станциях

     Факторы опасности ядерных реакторов  достаточно многочисленны. Перечислю  лишь некоторые из них. Возможность аварии с разгоном реактора. При этом вследствие сильнейшего тепловыделения может произойти расплавление активной зоны реактора и попадание радиоактивных веществ в окружающую среду. Если в реакторе имеется вода, то в случае такой аварии она будет разлагаться на водород и кислород, что приведет к взрыву гремучего газа в реакторе и достаточно серьезному разрушению не только реактора, но и всего энергоблока с радиоактивным заражением местности. Аварии с разгоном реактора можно предотвратить, применив специальные технологии конструкции реакторов, систем защиты, подготовки персонала. Радиоактивные выбросы в окружающую среду. Их количество и характер зависит от конструкции реактора и качества его сборки и эксплуатации. Очистные сооружения могут уменьшить их. Впрочем, у атомной станции, работающей в нормальном режиме, эти выбросы меньше, чем, скажем, у угольной станции, так как в угле тоже содержатся радиоактивные вещества, и при его сгорании они выходят в атмосферу. Необходимость захоронения отработавшего реактора. На сегодняшний день эта проблема не решена, хотя есть много разработок в этой области. Радиоактивное облучение персонала. Можно предотвратить или уменьшить применением соответствующих мер радиационной безопасности в процессе эксплуатации атомной станции. Ядерный взрыв ни в одном реакторе произойти в принципе не может.

     Безопасность  ядерных реакторов обычно рассматривают  с двух точек зрения: ядерной и  радиационной. Оценка ядерной безопасности предполагает анализ тех характеристик  реактора, которые определяют масштаб возможных изменений мощности реактора, возникающих при различных аварийных ситуациях в системе. Под радиационной безопасностью понимают меры, принимаемые для защиты обслуживающего персонала и населения от неконтролируемой утечки радиоактивности при любом режиме работы реактора, включая аварийный. Радиационная безопасность определяется надежностью системы и степенью гарантий в случае предельно возможных аварий.

     Можно ожидать, что, по мере того, как ядерная  энергетика будет приобретать доминирующее положение в структуре всей энергетики в целом, преимущества теплотехнической концепции будут все больше утрачиваться. В этих условиях возрастет притягательность концепции физико-химического направления в реакторостроении, которая позволит достигнуть более высоких качественных характеристик АЭС и решить ряд задач энергетики, недоступных для твердотопливных реакторов.

     ЖСР (жидкосолевой реактор) в отношении  ядерной безопасности имеют ряд  характерных особенностей по сравнению  с твердотопливными реакторами, состоящими в следующем:

     * передача тепла от топлива  к промежуточному теплоносителю  происходит вне активной зоны  реактора, поэтому разрушение поверхности  раздела между топливом и теплоносителем  не приводит к серьезным нарушениям  режима работы активной зоны  и изменениям радиоактивности;

     * топливо в ЖСР выполняет одновременно  функцию теплоносителя первого  контура, поэтому в принципе  исключается весь комплекс проблем,  которые возникают в твердотопливных  реакторах при авариях, приводящих  к потере теплоносителя;

     * непрерывный вывод продуктов  деления, особенно нейтронных  ядов, а также возможность непрерывной  подпитки топливом сводит к  минимуму начальный запас реактивности, компенсируемый поглощающими стержнями. 

     К изменению реактивности ЖСР могут  привести следующие аварийные ситуации:

     * увеличение концентрации делящихся  материалов в топливной соли;

     * изменение эффективной доли запаздывающих  нейтронов;

Информация о работе Устройство ядерного реактора