Автор работы: Пользователь скрыл имя, 15 Февраля 2011 в 19:42, реферат
В настоящее время широкое применение в науке и технике нашли ускорители заряженных частиц – установки для получения пучков заряженных частиц (протонов, электронов, античастиц, ядер других атомов) высоких энергий – от десятков кэВ (10 3 эВ) до нескольких ТэВ (1012 эВ). В технике такие ускорители используются для получения изотопов, упрочнения поверхностей материалов и производства новых материалов, для создания источников электромагнитного излучения (от микроволнового до рентгеновского излучения), широко применяются в медицине и т.д.
1.Введение………………………………………………………………………….3
2.Современные ускорители заряженных частиц………………………………...4
3.Научные центры по исследованию элементарных частиц……………………7
4.Циклический ускоритель………………………………………………………15
5.Лазерный ускоритель на биениях……………………………………………..16
6.Заключение……………………………………………………………………..20
7.Список используемой литературы……………………………………………
РЕФЕРАТ
По дисциплине
«Концепции современного естествознания»
на тему
«Ускорители элементарных
частиц»
.
Содержание
Введение
В
настоящее время широкое применение
в науке и технике нашли ускорители
заряженных частиц – установки
для получения пучков заряженных
частиц (протонов, электронов, античастиц,
ядер других атомов) высоких
энергий – от десятков кэВ (10 3
эВ) до нескольких ТэВ (1012
эВ). В технике такие ускорители
используются для получения изотопов,
упрочнения поверхностей материалов
и производства новых материалов,
для создания источников электромагнитного
излучения (от микроволнового до
рентгеновского излучения), широко
применяются в медицине и т.д. Однако,
по-прежнему, к числу основных областей
применения ускорителей относятся
ядерная физика и физика высоких
энергий. Современные ускорители
заряженных частиц – главные источники
информации для физиков, изучающих
вещество, энергию, пространство
и время. Подавляющее большинство
элементарных частиц, известных
сегодня, не встречаются в естественных
условиях на Земле и получены
на ускорителях. Именно потребности
физики элементарных частиц являются
главным стимулом для развития
ускорительной техники, и в первую
очередь для повышения энергии,
до которой могут быть ускорены заряженные
частицы.
Современные
ускорители заряженных частиц.
В современной физике высоких энергий
используются ускорительные установки
двух типов. Традиционная схема
эксперимента на укорителе такова:
пучок заряженных частиц ускоряется
до максимально возможной энергии и затем
направляется на неподвижную мишень,
при столкновении с частицами которой
рождается множество элементарных
частиц. Измерения параметров рождающихся
частиц дают богатейшую экспериментальную
информацию, необходимую для проверки
(или создания) современной теории
элементарных частиц. Эффективность
реакции определяется энергией сталкивающейся
с мишенью частицы в системе центра
масс. Согласно теории относительности
при неподвижной мишени и одинаковых
массах покоя сталкивающихся
частиц энергия реакций
Er
= E (1)
Где E – энергия налетающей на мишень частицы, m0 – ее масса, c – скорость света. Так, при соударении с неподвижной мишенью протона, ускоренного до энергии 1000 ГэВ, только энергия 42 ГэВ идет на рождение новых частиц, а большая часть энергии расходуется на кинетическую энергию частиц, родившихся в результате реакции.
Предложенные в конце 60-х годов XX века ускорители на встречных пучках (коллайдеры), в которых реакция осуществляется при столкновении встречных ускоренных пучков заряженных частиц (электронов и позитронов, протонов и антипротонов и др.) дают существенный выигрыш в энергии реакции. В коллайдерах энергия реакций равна сумме энергий сталкивающихся частиц
E1 + E2 , то есть при равных энергиях частиц выигрыш составляет 2E/m0c2. Разумеется, эффективность коллайдера оказывается более низкой, чем ускорителя с неподвижной мишенью, так как частицы двух разреженных пучков сталкиваются между собой гораздо реже, чем частицы пучка и плотной мишени. Тем не менее, основная тенденция физики высоких энергий – это продвижение во все более высокие энергии, и большинство крупнейших ускорителей сегодня – это коллайдеры, в которых ради достижения рекордных энергий жертвуют числом столкновений.
Современные ускорители заряженных частиц являются самыми крупными экспериментальными установками в мире, причем энергия частиц в ускорителе линейно связана с его размером. Так, линейный ускоритель электронов SLC на энергию 50 ГэВ в Стэнфордском университете (США) имеет длину 3 км, периметр протонного синхротрона Тэватрон на энергию 900 ГэВ в лаборатории им. Э.Ферми (Батавия, США) составляет 6,3 км, а длина сооружаемого в Серпухове кольца, ускорительно-накопительного комплекса УНК, рассчитанного на энергию3 ТэВ, сооружаемый в 27-километровомускорительном тоннеле европейской организации ядерных исследований (ЦЕРН) в Женеве.
Постоянно возрастающие размеры ускорителей уже достигли границы разумного соотношения физических характеристик и финансовых затрат, превращая строительство ускорителей в проблему национального масштаба. Можно говорить, что чисто инженерные решения тоже близки к своему пределу. Очевидно, что дальнейший прогресс в ускорительной технике должен быть связан с поисками новых подходов и физических решений, делающих ускорители компактнее и дешевле в сооружении и эксплуатации. Последнее также немаловажно, так как энергопотребление современных ускорителей близко к энергопотреблению небольшого города. Прикладная ускорительная наука формулирует перед современной физикой интересную и чрезвычайно важную проблему. Нужно обратиться к новым достижениям в радиофизике, физики плазмы, квантовой электронике и физике твердого тела, чтобы найти достойные решения.
Наиболее многообещающими является поиск способов увеличения темпа ускорения частиц. В современных ускорителях темп ускорения частиц ограничен максимальной напряженностью ускоряющего электрического поля, которое можно создать в вакуумных системах. Эта величина не превышает сегодня 50МВ/м. В более сильных полях возникают явления электрического пробоя на стенках резонатора и образование плазмы, поглощающей энергию поля и препятствующей ускорению частиц. В действительности величина максимально допустимого высокочастотного поля зависит от его длины волны. Современные ускорители используют электрические поля с длиной волны больше 10 см. Например, переход к длине волны 1 см позволит увеличить максимально допустимые электрические поля в несколько раз и тем самым уменьшить размеры ускорителя. Разумеется, для реализации этого преимущества необходима разработка в этом диапазоне сверхмощных источников излучения, способных генерировать импульсы электромагнитных волн с мощностью в сотни МВт и длительностью импульса короче 100 нс. Это представляет собой крупную научно-техническую проблему, решением который заняты многие исследовательские центры мира.
Другой возможный путь – это отказ от традиционных вакуумных микроволновых резонансных систем и использование лазерного излучения для ускорения заряженных частиц. С помощью современных лазеров возможно создание электрических полей с напряженностью, намного превышающей предельные поля в микроволновом диапазоне. Однако непосредственное использование лазерного излучения в вакууме не позволяет достичь эффекта заметного ускорения заряженных частиц из-за невозможности резонансного черенковского взаимодействия волны с частицей, так как скорость света в вакууме всегда больше скорости частицы. В последние годы активно изучаются методы ускорения заряженных частиц лазерным излучением в газах и плазме, причем, поскольку в сильных электрических полях происходит ионизация вещества и образование плазмы, в конечном счете, речь идет об ускорении заряженных частиц интенсивным лазерным излучением в плазме.
Научные
центры по исследованию элементарных
частиц
Институт
физики высоких энергий (ИФВЭ)
Основой для создания института явилось строительство в Протвино, расположенном вблизи подмосковного города Серпухова, самого крупного в мире (вплоть до 1972 г.) кольцевого протонного синхротрона. Собранная в этом научном центре уникальная экспериментальная техника дает возможность ученым проникнуть в глубины строения материи, понять и раскрыть неизвестные человеку законы бесконечно разнообразного и таинственного мира элементарных частиц.
Ускоритель пущен в октябре 1967 г. В этом ускорителе первоначально протоны образуются в результате газового разряда, затем ускоряются электрическим полем высоковольтного импульса трансформатора до энергии 760 КэВ и попадают в линейный ускоритель – инжектор, где предварительно ускоряются до энергии 100МэВ, и затем поступают в кольцо основного ускорителя. В нем уже протоны ускоряются до энергии 76 ГэВ. Число протонов в одном импульсе ускорителя – 3·1012 . Повторение импульсов происходит через каждые 7 сек. Ускоритель имеет в диаметре 472 м. Вес электромагнитов 20 тыс. т. Потребляемая ускорителем мощность 100 МВт. Ежегодно для физических исследований ускоритель работает 3000 - 4000 час.
Научный центр имеет насыпь, под которой находится ускорительное кольцо, и экспериментальный зал. Эксперименты в ИФВЭ осуществляются как на внутренней мишени ускорителя, так и на выведенных пучках частиц.
На внутренней мишени к 1970 г. выполнен эксперимент по изучению упругого рассеяния протона на протоне и протона на дейтоне, с использованием разработанной в ОИЯЛ газоструйной водородной мишени. Мишень представляла собой сверхзвуковую струю водорода, направленную в камеру и пересекающую протонный пучок. В опыте измерялось угловое распределение протонов, отклонившихся от направления движения в пучке из-за соударения с протонами газа-мишени. Из вида этого распределения можно было сделать вывод о радиусе протона.
Основная часть экспериментов проводится
на выведенном пучке. Всего получают около
двух десятков пучков частиц. Схема разводки
пучков:
10
9
8
7
4
2
Часть пучков используется для технических целей – проверки работы оборудования, а часть – для физических исследований.
Один из пучков (2) - это пучок отрицательных π – и κ - мезонов с энергией от 30 до 65 ГэВ и интенсивностью от 104 до 106 частиц/имп ускорителя. Его получают следующим образом.
Пучок ускоренных протонов направляется на твердую, обычно бериллиевую мишень, расположенную внутри вакуумной камеры. Родившиеся при соударении отрицательно заряженные частицы π – и κ - мезоны или антипротоны отклоняются магнитным полем и выводятся из ускорителя. Только небольшую часть из них удается с помощью электрических и магнитных полей сформировать в пучок. Поэтому для получения пучков вторичных частиц желательно иметь максимальную интенсивность ускоряемого основного пучка. Дальнейший этап – разделение мезонов и антипротонов по массе с помощью большого масс-спектрометра. В масс-спектрометре частицы разной массы движутся под действием магнитного поля по разным дорожкам и затем выводятся в отдельные пучки. Такое разделение быстрых частиц, имеющих скорости, близкие к скорости света, - сложная техническая задача, она требует создания сильных магнитов и спектрометров большого размера. Основную долю в пучке составляют пионы.
Важнейшая группа экспериментов, выполненных в 1971 г. на пучке 2, состояла в измерении полных сечений рассеяния отрицательно заряженных частиц на протоне. Часть опытов проведена совместно учеными ИФВЭ и ЦЕРНа. Измерения осуществляли с помощью счетчиков частиц. Аналогичные измерения затем были выполнены и для положительно заряженных пионов, каонов и протонов.
Результаты оказались совершенно неожиданными по сравнению с тем, что наблюдалось при меньших энергиях. Так, было известно, что полные сечения рассеяния в измеренном ранее интервале энергий от 1 до 30 ГэВ монотонно убывают, причем разница сечений рассеяния мезонов противоположных знаков убывает с ростом энергий частиц (сечение рассеяния отрицательно заряженных частиц больше сечения положительно заряженных частиц того же вида). Очевидная экстраполяция в область больших энергий требовала дальнейшего убывания сечений. Однако эксперименты в ИФВЭ показали, что при рассеянии пионов и антипротонов вместо дальнейшего быстрого падения сечений с ростом энергий обнаружилось замедление падения и установление некоторого постоянного значения; для κ+ - рассеяния на протоне сечение, которое было постоянным, обнаружило заметный рост. Эффект изменения характера поведения сечений рассеяния частиц на протоне с ростом энергии получил название «серпуховского эффекта». Авторы открытия: Ю.Д. Прокошкин, С.П. Денисов, Ю.П. Горин, С.В. Денисов, В.И. Петрухин, Д.А. Стоянова, Р.С. Шувалов, Ю.Б. Бушнин, Ю.П. Дмитриевский, В.С. Селезнев.