Автор работы: Пользователь скрыл имя, 23 Ноября 2010 в 07:05, Не определен
Поток напряженности электрического поля. Возникновение и развитие теории электромагнитного поля
Содержание
Введение
По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле, которое оказывает силовое действие на другие заряженные тела.
Главное свойство электрического поля – действие на электрические заряды с некоторой силой. Таким образом, взаимодействие заряженных тел осуществляется не непосредственным их воздействием друг на друга, а через электрические поля, окружающие заряженные тела.
Для
количественного определения
Напряженностью электрического поля называют физическую величину, равную отношению силы, с которой поле действует на положительный пробный заряд, помещенный в данную точку пространства, к величине этого заряда:
Напряженность электрического поля – векторная физическая величина. Направление вектора Е совпадает в каждой точке пространства с направлением силы, действующей на положительный пробный заряд.
Напряженность
электрического поля, создаваемого системой
зарядов в данной точке пространства,
равна векторной сумме
Это
свойство электрического поля означает,
что поле подчиняется принципу суперпозиции.
Поток
напряженности электрического
поля. Теорема Гаусса
в интегральной форме
Рис.
1.1.1
Пусть
n – единичная нормаль к площадке
dS (достаточно малой, чтобы пренебречь
изменением электрической напряженности
Е в пределах площадки). Поток dФэ
электрической напряженности через эту
площадку определяется как произведение
нормальной компоненты Е и dS:
Знак потока dFэ, очевидно, зависит от взаимной ориентации нормали и напряженности. Если эти два вектора образуют острый угол, поток положителен, если тупой – отрицателен.
Поток
dFэ через площадку, наклонную к силовой
линии (т.е. к вектору Е), равен также потоку
через проекцию этой площадки на плоскость,
перпендикулярную силовой линии (см. рис.
1.1.2):
Это равенство (1.1.1) следует из определения (1.1.1) для dF э и теоремы об углах с взаимно перпендикулярными сторонами.
Рис.
1.1.3
Поток
Fэ электрической напряженности
Е через замкнутую поверхность S (рис. 1.3.3)
определяется как сумма элементарных
потоков через все площадки поверхности.
В пределе, когда количество площадок
N стремится к бесконечности, сумма потоков
через площадки переходит в поверхностный
интеграл от нормальной компоненты напряженности
En:
К.
Гауссом в 1844 доказана теорема (теорема
Гаусса в интегральной форме), устанавливающая
связь источников поля и потока напряженности
через произвольную поверхность, окружающую
источники.
Для доказательства выведем вспомогательную формулу. Поток от точечного заряда через произвольную окружающую его сферу.
Силовые
линии поля точечного заряда перпендикулярны
поверхности концентрической сферы
(см. рис 1.1.4). С учетом этого факта формула
(1.1.4) выводится из выражения для поля точечного
заряда. Как видно, в этом случае поток
F э не зависит от радиуса сферы,
а зависит только от Q .
Рис.
1.1.5
Из
(1.1.2) и (1.1.4) следует, что поток поля точечного
заряда через любую поверхность, окружающую
заряд, равен потоку через сферу произвольного
радиуса, концентричную заряду. Действительно,
поток поля точечного заряда через любую
площадку dS, вырезанную телесным углом
dW
из произвольной поверхности, получается
таким же, как поток через площадку
сферы, вырезанную тем же телесным
углом. Поток поля Fэ через сферу,
как уже отмечалось, не зависит от ее радиуса.
Поэтому поток напряженности поля точечного
заряда через поверхность S (см. рис. 1.3.5)
задается формулой (1.3.4). Из формулы (1.3.4)
и принципа суперпозиции следует теорема
Гаусса в интегральной форме: полный поток
Fэ напряженности электрического
поля через произвольную замкнутую поверхность,
внутри которой находится как угодно распределенный
(объемный, поверхностный и т.д.) заряд
Q, вычисляется по формуле
При применении теоремы Гаусса для решения задач, необходимо помнить, что в уравнении (1.1.5) Q – сумма всех зарядов внутри мысленной поверхности, через которую вычисляется поток, в том числе зарядов, принадлежащим атомам и молекулам среды (так называемых связанных зарядов).
Поток
напряженности поля Е через любую
замкнутую поверхность, внутри которой
полный заряд равен нулю, также
равен нулю.
Возникновение и развитие теории электромагнитного поля
В 17-18 веках электромагнитные процессы все глубже проникали в науку: в физику и химию. Наступала эпоха электромагнитной картины мира, сменившей механическую.
Максвелл ясно видел фундаментальное значение электромагнитных законов, осуществив грандиозный синтез оптики и электричества. Именно ему удалось свести оптику к электромагнетизму, создав электромагнитную теорию света и проложив тем самым новые пути не только в теоретической физике, но и в технике, подготовив почву для радиотехники.
Фарадей по-новому подошел к изучению электричества и магнитных явлений, указывая на роль среды и вводя концепцию поля, описываемого им с помощью силовых линий. Максвелл придал идеям математическую завершенность, ввел точный термин «электромагнитное поле», которого еще не было у фарадея, сформулировал математические законы этого поля. Галилей и Ньютон заложили основы механической картины мира, фарадей и Максвелл — основы электромагнитной картины мира.
Электромагнитную теорию Максвелл развивает в работах «О физических линиях силы» (1861—1862) и «Динамическая теория поля» (1864—1865). Эти работы он писал уже не в Абердине, а в Лондоне, где получил профессуру в Кинг - колледже. Здесь Максвелл встретился и с Фарадеем, который был уже стар и болен. Максвелл, получив данные, подтверждающие электромагнитную природу света, послал их фарадею. Максвелл писал: «Электромагнитная теория света, предложенная им (Фарадеем) в «Мыслях о лучевых вибрациях» (Phil. Mag., май 1846) или «Экспериментальных исследованиях» (Ехр. Rec., p. 447), - это по существу то же, что я начал развивать в этой статье («Динамическая теория поля» —Phil. Mag., 1865), за исключением того, что в 1846 г. не было данных для вычисления скорости распространения. Дж.К.М.».
В 1873 г. вышел главный труд Максвелла «Трактат по электричеству и магнетизму». Он начал писать популярное изложение своей теории «Электричество в элементарном изложении», но закончить его не успел.
Максвелл
был разносторонним ученым: теоретиком,
экспериментатором, техником. Но в истории
физики его имя прежде всего ассоциируется
с созданной им теорией электромагнитного
поля, которая так и называется
теорией Максвелла или
Максвелл начал разрабатывать свою теорию в 1854 г.
Максвелл характеризует электротоническое состояние с помощью трех функций, которые называет электротоническими функциями или составляющими электротонического состояния. В современных обозначениях эта векторная функция соответствует вектору-потенциалу. Криволинейный интеграл этого вектора вдоль замкнутой линии Максвелл называет «полной электротонической интенсивностью вдоль замкнутой кривой». Для этой величины он находит первый закон электротонического состояния: «Полная электротоническая интенсивность вдоль границы элемента поверхности служит мерой количества магнитной индукции, проходящей через этот элемент, или, другими словами, мерой числа магнитных силовых линий, пронизывающих данный элемент». В современных обозначениях этот закон может быть выражен формулой:
где A - компонента вектора потенциала в направлении элемента кривой dl, Bn ~ нормальная компонента вектора индукции В в направлении нормали к элементу поверхности dS.
Далее Максвелл пишет «уравнение магнитной проводимости»:
связывающее магнитную индукцию В с вектором напряженности магнитного поля Н.
Третий
закон связывает напряженность
магнитного поля Н с силой создающего
ее тока I. Максвелл формулирует его
так: «Полная магнитная
которая ныне называется первым уравнением Максвелла в интегральной форме. Она отражает экспериментальный факт, открытый Эрстедом: ток окружен магнитным полем.
Четвертый закон — это закон Ома:
Для
характеристики силовых взаимодействий
токов Максвелл вводит величину, называемую
им магнитным потенциалом. Эта величина
подчиняется пятому закону: «Полный
электромагнитный потенциал замкнутого
тока измеряется произведением количества
тока на полную электротоническую
Шестой
закон Максвелла относится к
электромагнитной индукции: «Электродвижущая
сила, действующая на элемент проводника,
измеряется производной по времени
от электротонической
Это второе уравнение Максвелла в интегральной форме. Заметим, что электродвижущей силой Максвелл называет циркуляцию вектора напряженности электрического поля. Максвелл обобщает закон индукции фарадея — Ленца— Неймана, считая, что изменение во времени магнитного потока (электротонического состояния) порождает вихревое электрическое поле, существующее независимо от того, есть ли замкнутые проводники, в которых это поле возбуждает ток, или нет. Обобщения же закона Эрстеда Максвелл пока не дает.