Автор работы: Пользователь скрыл имя, 20 Декабря 2010 в 16:53, дипломная работа
Выпускная работа состоит их трех глав. В первой главе рассмотрены основные сведения о тонкой структуре и сформулирована постановка задачи. Во второй главе описана экспериментальная установка и методика измерений. В третьей главе представлены экспериментальные результаты. Завершается работа заключением и списком литературы.
Вклад экситонов в
Электронная бомбардировка по-разному действует на тонкую структуру спектра фотопроводимости в кристаллах разных типов, но основным результатом является исчезновение самой тонкой структуры в кристаллах 1-го и 2-го типов и образование гладких бесструктурных кривых после небольших доз облучения (~ 1014 — 1015 эл/см2). После больших доз облучения структура может возникать вновь (рис. 5, кривая 3).
Сильное
воздействие на структуру спектров
фотопроводимости кристаллов CdS оказывает
также интенсивное
Установлено,
что результат воздействия
Наличие адсорбированного на поверхности CdS кислорода и влияние его на фотопроводимость было доказано многочисленными исследованиями: например, К.Райтом и К. Боэром при воздействии электронной бомбардировки [31], П. Марком при УФ-облучении [19]. Р.Шуберт и К.Боэр [32] показали, использовав масс-спектрометрический метод, что на поверхности кристаллов CdS, относящихся к разным типам, кислород адсорбирован в различных формах. К. Боэр и другие исследовали этим же методом роль нестехиометрии поверхностного слоя в формировании спектров фотопроводимости и люминесценции CdS [33, 34].
При низких температурах в спектрах ФП полупроводников в области края собственного поглощения можно наблюдать тонкую структуру (ТС) в виде максимумов (тип 1) или минимумов (тип 2), обусловленную экситонами. Наличие ТС обусловлено различием времени жизни неравновесных основных носителей в приповерхностном слое (τs) и объеме полупроводника (τv) [35]. При этом тип ТС определяется соотношением этих времен: в случае ТС типа 1 τs > τv, в случае ТС типа 2 τs < τv, а при выполнении равенства τs = τv спектры ФП должны иметь бесструктурный (гладкий) вид. Воздействуя на полупроводник различными способами, можно изменять соотношение между τs и τv а, следовательно, и тип ТС, используя последнюю как индикатор изменения фоточувствительности приповерхностной области и / или объема полупроводника.
В настоящей работе исследованы низкотемпературные (T = 4 ÷77 K) спектры ФП кристаллов CdS в зависимости от электрического поля, приложенного к полупроводнику по методу ”эффекта поля”, предварительного фотовозбуждения собственным светом, подсветки ИК — светом и тянущего поля. Обнаружены характерные изменения ТС спектров и фоточувствительности в собственной и примесной областях спектра.
Приложение к полупроводнику электрического поля, создающего слой обеднения вблизи поверхности, приводит, по мере его увеличения, к обратимой трансформации ТС от типа 1 к типу 2 (рис. 6, кривые 1—3). На промежуточной стадии такой трансформации спектральная кривая ФП приобретает гладкий вид (кривая 2). При значениях потенциала на полевом электроде, соответствующих слою обогащения у поверхности, тип ТС сохраняется (кривая 4).
К обратимой трансформации ТС от типа 1 к типу 2 приводит также предварительная засветка кристалла собственным светом1.
В ряде кристаллов наблюдается обратимая трансформация ТС от типа 2 к типу 1 при интенсивной инфракрасной (ИК) подсветке. Имелись образцы, в которых переход от типа 2 к типу 1 ТС происходил при увеличении тянущего поля (рис. 7). Отметим немаловажную для дальнейшего деталь, а именно: инверсия типа ТС с увеличением тянущего поля наблюдалась в образцах с линейными размерами ~ 1 mm.
Основные качественные черты изменения спектров ФП в собственной и примесной областях спектра заключаются в следующем.
В случае перехода типа 1 ТС в тип 2 фоточувствительность в собственной области спектра сильно уменьшается при относительно слабом ее изменении в примесной области максимумов ДM1 и ДM2. В результате спектры ФП приобретают характерный для кристаллов с типом 2 ТС вид кривой с доминирующим длинноволновым максимумом в примесной области спектра (рис. 6, кривые 1–3) [37].
В случае инверсии типа ТС при ИК-подсветке происходит общее гашение фоточувствительности, существенно превалирующее в спектральной области дополнительных максимумов ДM1 и ДM2. В случае инверсии типа ТС с ростом тянущего поля фоточувствительность в области ДM1 и ДM2 практически не меняется, а в собственной области спектра значительно возрастает (рис. 7). В обоих случаях фоточувствительность в области максимумов ДM1 и ДM2 относительно собственной области уменьшается, а общий вид спектральных кривых ФП приобретает черты, характерные для кристаллов с типом 1 ТС.
Трансформация спектров ФП по мере увеличения слоя обеднения у поверхности (рис. 6, кривые 1-3) объясняется уменьшением τs за счет увеличения скорости рекомбинации в области пространственного заряда по мере перехода от слабого обогащающего к истощающему приповерхностному изгибу зон [35]. Аналогично можно объяснить влияние предварительной засветки собственным светом на спектры ФП, поскольку в результате освещения возможна перезарядка поверхностных состояний за счет заполнения их электронами. Образование слоя обеднения у поверхности кристаллов CdS с типом 1 ТС, обусловленное ”прилипанием” фотоэлектронов на поверхностные состояния, обнаружено в [38] методе спектроскопии фотоотражения в области экситонных резонансов2.
Характер действия ИК-подсветки на ТС спектров ФП указывает на изменение под ее влиянием соотношения τs < τv на обратное. В то же время значительное уменьшение фототока в собственной области спектра при ИК-подсветке указывает на соответствующее уменьшение τs. Поэтому соотношение τs > τv может реализоваться при ИК-подсветке лишь в случае преимущественного уменьшения при этом τv. Это фактически и наблюдается в эксперименте в виде превалирующего ИК-гашения фототока в примесной области максимумов ДM1 и ДM2.
Селективный характер ИК-гашения ФП, с одной стороны, объясняет трансформацию ТС при ИК-подсветке, а с другой стороны указывает на объемное происхождение ДM1 и ДM2 (на это указывает также отмеченная выше их слабая чувствительность к изгибу зон у поверхности).
ИК-гашение ДM1 и ДM2 связано, на наш взгляд, с ионизацией ИК-излучением очувствляющих r-центров, с которыми непосредственно взаимодействуют соответствующие этим максимумам центры. Возможно, что r-центры входят в состав последних. Не исключено также, что центры, формирующие ДM1 и ДM2, являются двукратно ионизованными собственными акцепторными дефектами, изолированными (ДM2) [36] или возмущенными другими заряженными центрами (ДM1).
Нетривиальным
представляется нам эффект влияния тянущего
поля на ТС. Трансформация ТС, как и в случае
ИК-подсветки, указывает на обращение
неравенства τs < τv
с ростом тянущего поля. Однако в данном
случае такое обращение связано с ростом
τs при одновременном уменьшении
τv, что следует из сверхлинейного
роста фототока с ростом тянущего поля
в собственной области и сублинейного
— в примесной области (рис. 7). Подобные
изменения τs и τv с
ростом тянущего поля могут быть связаны
с инжекцией дырок из контакта (анода)
в сильных полях, легко достижимых в образцах
CdS с малыми размерами [39]. Инжекция дырок
может привести к сокращению τv
за счет захвата инжектированных дырок
r-центрами и увеличения темпа рекомбинации
в объеме свободных электронов с дырками,
захваченными на мелкие акцепторные центры.
Рост τs с увеличением тянущего
поля может быть вызван уменьшением истощающего
изгиба зон вблизи поверхности в результате
захвата части инжектированных дырок
приповерхностным дырочным ”карманом”.
В
работе была поставлена задача экспериментального
исследования изменений спектрального
распределения фотопроводимости кристаллов
в краевой области спектра с изменением
температуры в интервале 77–300
.
Рис. 8. Блок – схема
экспериментальной установки для измерения
спектров фотопроводимости
На
рис. 8. 1) – источник питания; 2) – светоизмерительная
лампа накаливания ленточного типа (СИ10
– 300У); 3) - объективы; 4) – светофильтр
(СЗС – 24); 5) – монохроматор МДР – 3; 6) –
поляризатор; 7) – оптический криостат
с исследуемым образцом CdS и термопарой;
8) – вольтметр постоянного тока В2-36; 9)
– источник питания типа Б5 – 50; 10) – электрометрический
усилитель типа У5-9; 11) – согласующий блок;
12) – самопишущий потенциометр КСП – 4.
Оптическая система установки состоит из источника света (2), объективов (3), светофильтра (4), монохроматора (5), поляризатора (6) и исследуемого образца (7). Электрическая система включает в себя источник питания (9), образец (7), усилитель (10) и самописец (12).
В качестве источника возбуждения в данной установке применяется светоизмерительная лампа СИ10 – 300У (2), с ленточным (вольфрамовым) телом накала и с увиолевым окошком, которое предназначено для пропускания широкого спектра излучения. Максимальная мощность лампы 300 Вт. Изменение яркости свечения лампы (2) осуществляется с помощью источника питания (1). Для поглощения инфракрасного света из спектра излучения лампы (2) на оптической скамье, поле объектива (3) устанавливается адсорбционный светофильтр СЗС – 24, область пропускания которого лежит в пределах от 300 до 700 нм. Для выделения монохроматического излучения и его развертки по спектру применяется монохроматор МДР – 3, диспергирующим элементом которого является дифракционная решетка (600 шт/мм, обратная линейная дисперсия 20 Å/мм). Для поляризации монохроматического излучения в установке используется поляризатор (6), плоскость поляризации которого может изменятся относительно оптической оси кристалла С. Исследуемый образец устанавливается в ячейку, которая помещается в оптический криостат с жидким азотом. Источник питания (9) предназначен для приложения тянущего напряжения к исследуемому полупроводнику через омические электроды. Возникающий в цепи фототок, регистрируется электрометрическим усилителем (10). Через согласующий блок (11), представляющий собой цепь сопротивлений с различными номиналами, далее сигнал регистрируется самопишущим потенциометром (12). Регистрация данных эксперимента производится на диаграммной ленте самописца (12).
Измерение
температуры производилось
Информация о работе Примесная краевая фотопроводимость полупроводников