Примесная краевая фотопроводимость полупроводников

Автор работы: Пользователь скрыл имя, 20 Декабря 2010 в 16:53, дипломная работа

Описание работы

Выпускная работа состоит их трех глав. В первой главе рассмотрены основные сведения о тонкой структуре и сформулирована постановка задачи. Во второй главе описана экспериментальная установка и методика измерений. В третьей главе представлены экспериментальные результаты. Завершается работа заключением и списком литературы.

Файлы: 1 файл

Дипломная работа.doc

— 440.00 Кб (Скачать файл)

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО  ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

“КАЛМЫЦКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ”

Кафедра экспериментальной  и общей физики 
 
 
 
 
 

«ПРИМЕСНАЯ» КРАЕВАЯ ФОТОПРОВОДИМОСТЬ ПОЛУПРОВОДНИКОВ

                                                                 

                                                                              Выпускная квалификационная работа

              студента  4 курса

              направления «Физика»

              Саргинова С.С. ___________________

                                                                           

              Научный руководитель -

              Зав.кафедрой экспериментальной и общей физики,

              кандидат  физико-математических наук, доцент   

              ______________________А.  С. Батырев                                                     

                                                                               “Допущен к защите”

              Зав. кафедрой экспериментальной и общей  физики,

              кандидат  физико-математических наук, доцент

              ______________________А.  С. Батырев                                                   

              «_____»__________________2010 г.

 

Элиста 2010 

СОДЕРЖАНИЕ 
 
 
 
 
 
 
 

Введение

 

    В спектрах фотопроводимости полупроводниковых  кристаллов непосредственно вблизи края основного поглощения возможно проявление мелких примесно–дефектных состояний донорного и акцепторного типов. Этот вопрос относительно подробно исследован для кристаллов CdS. Так, при температуре Т=300К в чистых кристаллах CdS, помимо основного максимума фотопроводимости, соответствующего межзонным переходам, в ряде случаев можно наблюдать, по крайней мере, два вида дополнительных максимумов, обозначенных ДМ1 и ДМ2. Первый (ДМ1) расположен в непосредственной близости к краю поглощения и проявляет сильную зависимость от поляризации возбуждающего света. Второй максимум фотопроводимости (ДМ2) расположен несколько длинноволновее первого и слабо зависит от поляризации возбуждающего света.

    Примесные максимумы ДМ1 и ДМ2 обнаруживают специфические изменения под действием засветки светом определенного спектрального состава, а также с изменениями тянущего поля и температуры. Исследование этих изменений может дать важную информацию о природе этих максимумов. Исходя из этого в данной работе была поставлена задача изучения температурной зависимости спектров фотопроводимости CdS в спектральной области «примесных» максимумов ДМ1 и ДМ2.

    Выпускная работа состоит их трех глав. В первой главе рассмотрены основные сведения о тонкой структуре и сформулирована постановка задачи. Во второй главе описана экспериментальная установка и методика измерений. В третьей главе представлены экспериментальные результаты. Завершается работа заключением и списком литературы. 
 
 
 
 
 
 

Глава №1. Обзор литературы и постановка задачи.

 
 

    Краткая история вопроса. Весьма примечательна проблема участия экситонов в фотопроводимости. Являясь нейтральным (хотя и подвижным) образованием, экситон не может непосредственно принимать участие в переносе электрического заряда [1]. Я. И. Френкель писал, что «у многих диэлектриков и полупроводников поглощение света не всегда сопровождается появлением электропроводности» [1].

    Однако  еще в 1938 г. Н. Мотт указал [2] на возможность возникновения свободных носителей тока в результате теплового распада экситонов. Дж. Франк и Е. Теллер [3] в том же году рассмотрели некоторые механизмы участия экситонов в фотохимических процессах. У. Фано в 1940 г. отметил возможность разрушения экситонов около поверхности с рождением свободных носителей [4].

    Первое  надежное экспериментальное подтверждение участия экситонов в фотоэлектрических процессах было получено Л.Апкером и Е. Тафтом в 1950 г [5]. Они исследовали фотоэмиссию с напыленных слоев щелочно-галоидных солей. Было установлено, что фотоэмиссия в этих соединениях появляется лишь после создания в них так называемых F-центров. При этом фотоэффект возникает в спектральной области, соответствующей прямой ионизации F-центров, но максимального значения фотоэмиссия достигает в экситонной линии поглощения (рис. 1). Авторы работы [5] предполагали, что в этом случае возникают экситоны, которые мигрируют к F-центрам и ионизируют их. Этот механизм создания свободных носителей экситонами в дальнейшем неоднократно использовался при обсуждении участия экситонов в фотоэлектрических процессах.

    При низких температурах на экситонном максимуме фотоэмиссии возникал «провал», который трактовался исследователями как эффект «самообращения», вызванный ростом коэффициента поглощения в экситонной линии и проявлением «мертвого» приповерхностного слоя, в котором не происходит возбуждения F-центров экситонами (рис. 1). Теория этого явления была развита М. Хеббом в 1951 г. [6] и, по существу, явилась первым опытом введения в теорию и эксперимент «мертвого» безэкситонного слоя. Позднее в 1957 г., аналогичные опыты, но уже при исследовании фотопроводимости в щелочно-галоидных кристаллах с F-центрами выполнил Н. Иншоуспе [7]. Он подтвердил, что и в этом процессе электроны возникают при ионизации F-центров экситонами. Детально эти процессы в щелочно-галоидных кристаллах изучались Ч. Б.Лущиком с сотрудниками (см. [8]).

  

  

  

       
 

     

  

  Теоретически  вопрос о создании свободных носителей  тока рассматривался в работах Й. Тойазава, М. Трлифая и других исследователей. Так, Тойазава в 1954 г. [9] теоретически изучил вопрос о создании свободных носителей тока при взаимодействии экситона с центром, захватившим электрон. В частности, он показал, что процесс ионизации F-центра более вероятен, чем процесс излучения экситонов, если концентрация F-центров не меньше 0,5 · 1016 см-3. М. Трлифай рассмотрел (1965 г.) теорию процессов аннигиляции экситонов в ионных кристаллах при взаимодействии их с нейтральными или ионизированными донорами, ведущих к генерации свободных носителей (табл. 1) [10]. Возможны также и процессы, когда захват экситона на нейтральный или заряженный центр не приводит к возникновению свободных носителей тока (связывание экситона). Позже было показано, что в случае захвата экситона заряженным центром возможен процесс с выбросом электрона в зону проводимости, т. е. оже-процесс. 

             Таблица  1.

          

           Примечание. Здесь          – ионизованный донор;      — дырка;      — свободный экситон;       

    — электрон.

     В 1956 г. Е. Ф. Гроссом  с сотрудниками впервые была обнаружена тонкая структура спектральных кривых фотопроводимости, коррелирующая с экситонным спектром поглощения в полупроводниковых кристаллах CdS и HgJ2. Явление получило название «тонкой структуры спектра, фотопроводимости» [11, 12]. Оно было интерпретировано как создание свободных носителей тока экситонами благодаря взаимодействию с примесными центрами и дефектами. В дальнейшем подобная структура была выявлена во многих полупроводниковых кристаллах [13, 14]. В 50-е годы было обнаружено проявление экситонных состояний и в спектрах фототока органических кристаллов [15, 16]. В настоящее время тонкая структура в спектрах фотопроводимости и фотоЭДС известна также для гетероструктур и нанокристаллов (см. рис. 2) [17].

    §1. Фотоэлектрические процессы с участием экситонов в полупроводниковых кристаллах

 

     Фотоэлектрические процессы с участием экситонов в  полупроводниковых кристаллах подробно изучены для кристаллов CdS, CdSe, Ge, GaAs, Cu2О. Для сернистого кадмия впервые показано существование спектров двух типов (или групп) (рис. 3) [18]. В спектрах первого типа экситонным линиям поглощения соответствуют максимумы фототока, а в спектрах второго типа этим же линиям соответствуют минимумы кривых фотопроводимости. Такой вид корреляции оказался характерным для всех кристаллов с прямыми разрешенными экситонными переходами (CdS, CdSe, CdTe, ZnSe, HgJ2). Механизм возникновения этого явления связан со свойствами поверхности и подробнее будет рассмотрен ниже.

    Дж. Хапфилдом в 1961 г. было высказано  соображение о важности сравнения величины фототока при одном и том же коэффициенте поглощения (α), но при разных величинах энергии в области экситонных линий и сплошного фона. Это позволило бы выделить истинный экситонный вклад в фотопроводимость. Такое сравнение было сделано Б. В. Новиковым и др. для кристаллов CdS [19]. Оказалось, что фототок в области экситонных максимумов поглощения в несколько раз выше, чем в глубине собственного поглощения при равных значениях коэффициента α. Поскольку квантовый выход фототока в этой спектральной области для CdS постоянен [20], то наблюдаемое различие, по-видимому, связано с временами жизни свободных носителей. Можно предположить, что «горячие» носители, создаваемые в глубине собственного поглощения, имеют меньшее время жизни, чем носители, созданные экситонами. Авторы этой работы использовали факт разрушения экситонов в тонком слое около поверхности (ионизация поверхностным электрическим полем) для определения диффузионной длины экситонов. Она составила в CdS от 200 до 1000 нм, а в CdSe от 200 до 400 нм.

    А. Коре и С. Никитин сравнили структуру  фототока и коэффициент поглощения для «желтой» серии экситона в кристалле Сu2О (рис. 4) [13].

     Оказалось, что  s-состояния экситона слабо проявляются в спектре фототока. В тоже время d- и р- состояния имеют много большую интенсивность в спектре фотопроводимости. Фотопроводимость в этом кристалле возникает при разрушении экситонов в локальных электрических полях. Если экситон движется в неоднородном электрическом поле, то оно будет поляризовать экситон и втягивать его в область более высоких электрических полей. Поскольку поляризуемость d- и р-состояний выше, чем поляризуемость s-состояний, то и вероятность разрушения их электрическим полем оказывается выше.

    Авторы  публикаций [21, 22] исследовали поведение фототока в непрямых экситонных переходах кристаллов германия и кремния. Ими было установлено, что в согласии с теоретическими работами М. Трлифая вероятность взаимодействия экситона с примесным центром зависит от его кинетической энергии и максимальна при k → ∞. Эти же авторы показали, что для наиболее чистых кристаллов германия (N+ – N ~ 1012–3) в слабых электрических полях экситоны не создают свободных носителей тока, если их кинетическая энергия меньше энергии связи экситона. Этим подтверждается основополагающая гипотеза Я. И. Френкеля об экситонах как нейтральных квазичастицах.

    Многими исследователями было доказано участие  связанных экситонов в создании свободных носителей тока. Так, в  кристаллах CdS был обнаружен максимум фототока на линии I2, принадлежащий экситону, локализованному на нейтральном доноре [11]. Предполагалось, что фототок в этом комплексе возникает в результате оже-процесса. В некоторых кристаллах CdS наблюдалась серия эквидистантных максимумов на кривых фотопроводимости, связанная с ионизацией экситонов на комплексе I2 с испусканием оптического фонона [11].

    В спектрах фотоответа р-п перехода для структуры на основе фосфида галлия, легированного азотом, авторами публикаций [23] были обнаружены максимумы фототока на линиях поглощения экситонов, связанных на единичных и на парных атомах азота. Анализируя свои данные, исследователи пришли к необычному выводу о миграции энергии связанных экситонов к р-п переходу с последующей их диссоциацией в области объемного заряда. Передача этого возбуждения происходит на расстояния, превышающие 10 мкм, что значительно больше, чем диффузионная длина для электронов и дырок в этом соединении.

    В кристаллах германия, легированных мышьяком и фосфором, авторами работы [24] также наблюдались четкие максимумы на кривой фотопроводимости, принадлежащие связанным экситонам. Кроме того, наблюдались более слабые максимумы, приписанные исследователями возбужденным состояниям дырки, входящей в экситон-примесный комплекс.

    Отметим также, что экситоны дают вклад и в создание фотоэдс. Впервые (в 1968 г.) это явление наблюдал В. Е. Лашкарев с сотрудниками для кристаллов CdS [20]. В. Н. Поляковым и др. исследованы (1985 г.) спектры барьерного фотоотклика гетероперехода п-CdS-n-CdSe в области экситонного поглощения CdSe и влияния на них напряжения смещения и дополнительной подсветки [25]. Ими определена диффузионная длина экситонов для CdSe. Она оказалась равной 25 ÷ 125 нм. Среди других работ на эту тему отметим недавно появившуюся работу Н. Нака и др. [26] по двухфотонному фотовольтаическому эффекту на экситонах в Сu2О.

Информация о работе Примесная краевая фотопроводимость полупроводников