Отражение звука

Автор работы: Пользователь скрыл имя, 01 Апреля 2010 в 21:04, Не определен

Описание работы

Отражение звука - явление, возникающее при падении звуковой волны на границу раздела двух упругих сред и состоящее в образовании волн, распространяющихся от границы раздела в ту же среду, из к-рой пришла падающая волна. Как правило, О. з. сопровождается образованием преломлённых волн во второй среде. Частный случай О. з. - отражение от свободной поверхности. Обычно рассматривается отражение на плоских границах раздела, однако можно говорить об О. з. от препятствий произвольной формы, если размеры препятствия значительно больше длины звуковой волны. В противном случае имеет место рассеяние звука или дифракция звука.

Файлы: 1 файл

ОТРАЖЕНИЕ ЗВУКА.doc

— 349.50 Кб (Скачать файл)

Рис. 4. Отражение  акустической волны, падающей на свободную поверхность кристалла с образованием двух отраженных волн той же поляризации: а - определение волновых векторов отражённых волн (сg - векторы лучевой скорости); б - схема отражения звуковых пучков конечного сечения.

Влияние затухания на характер О. з. [8,9]. Коэф. отражения и прохождения не зависят от частоты звука, если затухание звука в обеих граничных средах пренебрежимо мало. Заметное затухание приводит не только к частотной зависимости коэф. отражения R, но и искажает его зависимость от угла падения, в особенности вблизи критич. углов (рис. 5, а). При отражении от границы раздела жидкости с твёрдым телом эффекты затухания существенно меняют угловую зависимость R при углах падения, близких к рэлеевскому углу (рис. 5,б). На границе сред с пренебрежимо малым затуханием при таких углах падения имеет место полное внутреннее отражение и |R| = 1 (кривая 1 на рис. 5, б). Наличие затухания приводит к тому, что |R| становится меньше 1, а вблизи образуется минимум |R| (кривые 2 - 4). По мере увеличения частоты и соответствующего роста коэф. затухания глубина минимума увеличивается, пока, наконец, на нек-рой частоте f0, наз. частотой нулевого отражения, мин. значение |R| не обратится в нуль (кривая 3, рис. 5,б). Дальнейший рост частоты приводит к уширенпю минимума (кривая 4)и влиянию эффектов затухания на О. з. практически для любых углов падения (кривая 5). Уменьшение амплитуды отражённой волны по сравнению с амплитудой падающей не означает, что падающее излучение проникает в твёрдое тело. Оно связано с поглощением вытекающей волны Рэлея, к-рая возбуждается падающим излучением и участвует в формировании отражённой волны. Когда звуковая частота f равна частоте f0, вся энергия падающей волны диссипируется на границе раздела.

Рис. 5. Угловая  зависимость |R| на границе вода - сталь с учётом затухания: а - общий характер угловой зависимости |R|; сплошная линия - без учёта потерь, штриховая линия - то же с учётом затухания; б - угловая зависимость | R \ вблизи рэлеевского угла при различных значениях поглощения поперечных волн в стали на длине волны. Кривые 1 - 5 соответствуют увеличению этого параметра от значения 3 x 10-4 (кривая 1)до значения = 1 (кривая 5) за счёт соответствующего возрастания частоты падающего УЗ-излучения.

О. з. от слоев и пластин  [1,3,5,6,10,11]. О. з. от слоя или пластины носит резонансный характер. Отражённая и прошедшая волны формируются в результате многократных переотражений волн на границах слоя. В случае жидкого слоя падающая волна проникает в слой под углом преломления определяемым из закона Снелля. За счёт переотражений в самом слое возникают продольные волны, распространяющиеся в прямом и обратном направлениях под углом к нормали, проведённой к границам слоя (рис. 6, а). Угол представляет собой угол преломления, отвечающий углу падения на границу слоя. Если скорость звука в слое с2 больше скорости звука с1 в окружающей жидкости, то система переотражённых волн возникает лишь тогда, когда меньше угла полного внутр. отражения = arcsin (c1/c2). Однако для достаточно тонких слоев прошедшая волна образуется и при углах падения, больших критического. В этом случае коэф. отражения от слоя оказывается по абс. величине меньше 1. Это связано с тем, что при в слое вблизи той его границы, на к-рую падает извне волна, возникает неоднородная волна, экспоненциально спадающая в глубь слоя. Если толщина слоя d меньше или сравнима с глубиной проникновения неоднородной волны, то последняя возмущает противоположную границу слоя, в результате чего с неё излучается в окружающую жидкость прошедшая волна. Это явление просачивания волны аналогично просачиванию частицы через потенциальный барьер в квантовой механике.  
Коэф. отражения от слоя

где - нормальная компонента волнового вектора в слое, ось z - перпендикулярна границам слоя, R1 и R2 - коэф. О. з. соответственно на верхней и нижней границах. При представляет собой периодич. ф-цию звуковой частоты f и толщины слоя d. При когда имеет место просачивание волны через слой, | R | при увеличении f или d монотонно стремится к 1.

Рис. 6. Отражение  звуковой волны от жидкого слоя: а - схема отражения; 1 - окружающая жидкость; 2 - слой; б - зависимость модуля коэффициента отражения |R| от угла падения .

Как ф-ция угла падения значение | R | имеет систему максимумов и минимумов (рис. 6, б). Если по обе стороны слоя находится одна и та же жидкость, то в точках минимума R = 0. Нулевое отражение возникает, когда набег фазы на толщине слоя равен целому числу полупериодов

и волны, выходящие  в верхнюю среду после двух последовательных переотражений, будут находиться в противофазе и взаимно гасить друг друга. Наоборот, в нижнюю среду все переотражённые волны выходят с одной и той же фазой, и амплитуда прошедшей волны оказывается максимальной. При нормальном падении волны на слой полное пропускание имеет место, когда на толщине слоя укладывается целое число полуволн: d = где п = 1,2,3,..., - длина звуковой волны в материале слоя; поэтому слои, для к-рых выполнено условие (8), наз. полуволновымн. Соотношение (8) совпадает с условием существования нормальной волны в свободном жидком слое. В силу этого полное пропускание через слои возникает, когда падающее излучение возбуждает в слое ту или иную нормальную волну. За счёт контакта слоя с окружающей жидкостью нормальная волна является вытекающей: при своём распространении она полностью переизлучает энергию падающего излучения в нижнюю среду.  
Когда жидкости по разные стороны от слоя различны, наличие полуволнового слоя никак не сказывается на падающей волне: коэф. отражения от слоя равен коэф. отражения от границы этих жидкостей при их непо-средств. контакте. Помимо полуволновых слоев в акустике, как и в оптике, большое значение имеют т. н. четвертьволновые слои, толщины к-рых удовлетворяют условию (п=1,2,...). Подбирая соответствующим образом акустич. импеданс слоя, можно получить нулевое отражение от слоя волны с заданной частотой f при определённом угле падения её на слой. Такие слои используются в качестве просветляющих акустических слоев.  
Для отражения звуковой волны от бесконечной твёрдой пластины, погружённой в жидкость, характер отражения, описанный выше для жидкого слоя, в общих чертах сохранится. При переотражениях в пластине дополнительно к продольным будут также возбуждаться сдвиговые волны. Углы и , под к-рыми распространяются соответственно продольные и поперечные волны в пластине, связаны с углом падения законом Снелля. Угл. и частотная зависимости |R| будут представлять собой, как и в случае отражения от жидкого слоя, системы чередующихся максимумов и минимумов. Полное пропускание через пластину возникает в том случае, когда падающее излучение возбуждает в ней одну из нормальных волн, представляющих собой вытекающие
Лэмба волны .Резонансный характер О. з. от слоя или пластины стирается по мере того, как уменьшается отличие их акустич. свойств от свойств окружающей среды. Увеличение акустич. затухания в слое также приводит к сглаживанию зависимостей и |R(fd)|.

Отражение неплоских волн [1 - 3, 7. 12]. Реально существуют только неплоские волны; их отражение может быть сведено к отражению набора плоских волн. Монохроматич. волну с волновым фронтом произвольной формы можно представить в виде совокупности плоских волн с одной и той же круговой частотой , но с разл. направлениями волнового вектора k. Осн. характеристикой падающего излучения является его пространственный спектр - набор амплитуд A(k) плоских волн, образующих в совокупности падающую волну. Абс. величина k определяется частотой , поэтому его компоненты не являются независимыми. При отражении от плоскости z = 0 нормальная компонента kz задаётся тангенциальными компонентами kx, ky: kz = Каждая плоская волна, входящая в состав падающего излучения, падает на границу раздела под своим углом и отражается независимо от других волн. Поле Ф(r) отражённой волны возникает как суперпозиция всех отражённых плоских волн и выражается через пространственный спектр падающего излучения A(kx, ky)и коэф. отражения R(kx, ky):

Интегрирование  распространяется на область сколь  угодно больших значений kx и ky. Если пространственный спектр падающего излучения содержит (как при отражении сферич. волны) компоненты с kx(или ky), большими , то в формировании отражённой волны помимо волн с действительными kz принимают участие также неоднородные волны, для к-рых k, - чисто мнимая величина. Этот подход, предложенный в 1919 Г. Вейлем (Н. Weyl) и получивший своё дальнейшее развитие в представлениях фурье-оптики, даёт последоват. описание отражения волны произвольной формы от плоской грашщы раздела.  
При рассмотрении О. з. возможен также лучевой подход, к-рый основан на принципах геометрической акустики. Падающее излучение рассматривается как совокупность лучей, взаимодействующих с границей раздела. При этом учитывается, что падающие лучи не только отражаются и преломляются обычным образом, подчиняясь законам Снелля, но и что часть лучей, падающих на поверхность раздела под определёнными углами, возбуждает т. н. боковые волны, а также вытекающие поверхностные волны (Рэлея и др.) или вытекающие волноводные моды (Лэмба волны и др.). Распространяясь вдоль поверхности раздела, такие волны вновь переизлучаются в среду и участвуют в формировании отражённой волны. Для практики осн. значение имеет отражение сферич. волн, коллимнрованных акустпч. пучков конечного сечения и фокусированных звуковых пучков.

Отражение сферических волн [1 - 3]. Картина отражения сферич. волны, создаваемой в жидкости I точечным источником О, зависит от соотношения между скоростями звука с1 и с2 в соприкасающихся жидкостях I и II (рис. 7). Если ct > с2, то критич. угол отсутствует и отражение происходит по законам геом. акустики. В среде I возникает отражённая сферич. волна: отражённые лучи пересекаются в точке О'. образуя мнимое изображение источника, а волновой фронт отражённой волны представляет собой часть сферы с центром в точке О'.

Рис. 7. Отражение  сферической волны на границе раздела двух жидкостей: О и О' - действительный и мнимый источники; 1 - фронт отражённой сферической волны; 2 - фронт преломлённой волны; 3 - фронт боковой волны.

Когда c2>clи имеется критич. угол в среде I помимо отражённой сферич. волны возникает ещё одна компонента отражённого излучения. Лучи, падающие на границу раздела под критич. углом возбуждают в среде II волну, к-рая распространяется со скоростью с2 вдоль поверхности - раздела и переизлучается в среду I, формируя т. н. боковую волну. Её фронт образуют точки, до к-рых в один и тот же момент времени дошли лучи, вышедшие из точки О вдоль ОА и затем перешедшие снова в среду I в разл. точках границы раздела от точки А до точки С, в к-рой в этот момент находится фронт преломлённой волны. В плоскости чертежа фронт боковой волны представляет собой прямолинейный отрезок СВ, наклонённый к границе под углом и простирающийся до точки В, где он смыкается с фронтом зеркально отражённой сферич. волны. В пространстве фронт боковой волны представляет собой поверхность усечённого конуса, возникающего при вращении отрезка СВ вокруг прямой ОО'. При отражении сферич. волны в жидкости от поверхности твёрдого тела подобная же конич. волна образуется за счёт возбуждения на границе раздела вытекающей рэлеевской волны. Отражение сферич. волн - один из основных эксперим. методов геоакустики, сейсмологии, гидроакустики и акустики океана.

Отражение акустических пучков конечного сечения  [1,3,7,12]. Отражение коллимированных звуковых пучков, волновой фронт к-рых в осн. части пучка близок к плоскому, происходит для большинства углов падения так, будто отражается плоская волна. При отражении пучка, падающего из жидкости на границу раздела с твёрдым телом, возникает отражённый пучок, форма к-рого является зеркальным отражением распределения амплитуды в падающем пучке. Однако при углах падения, близких к продольному критич. углу или рэлеевскому углу наряду с зеркальным отражением происходит эфф. возбуждение боковой или вытекающей ролеевской волны. Поле отражённого пучка в этом случае является суперпозицией зеркально отражённого пучка и переизлучённых волн. В зависимости от ширины пучка, упругих и вязких свойств граничащих сред возникает либо латеральный (параллельный) сдвиг пучка в плоскости раздела (т. н. смещение Шоха) (рис. 8), либо существенное уширение пучка и появление тонкой  

Рис. 8. Латеральное  смещение пучка при отражении: 1 - падающий пучок; 2 - зеркально отражённый пучок; 3 - реально отражённый пучок.

структуры. При падении пучка под углом Рэлея характер искажений определяется соотношением между шириной пучка l и радиац. затуханием вытекающей рэлеевской волны

где - длина звуковой волны в жидкости, А - числовой множитель, близкий к единице. Если ширина пучка значительно больше длины радиац. затухания происходит лишь смещение пучка вдоль поверхности раздела на величину В случае узкого пучка за счёт переизлучения вытекающей поверхностной волны пучок существенно уширяется и перестаёт быть симметричным (рис. 9). Внутри области, занятой зеркально отражённым пучком, в результате интерференции возникает нулевой минимум амплитуды и пучок распадается на две части. Незеркальное отражение коллимиров. пучков возникает и на границе двух жидкостей при углах падения, близких к критическому, а также при отражении пучков от слоев или пластин.  

Рис. 9. Отражение  звукового пучка конечного сечения, падающего из жидкости Ж на поверхность  твёрдого тела Т под углом Рэлея: 1 - падающий пучок; 2 - отражённый пучок; а - область нулевой амплитуды; б - область хвоста пучка.

В последнем  случае незеркальный характер отражения  обусловлен возбуждением в слое или  пластине вытекающих волноводных мод. Существенную роль играют боковые и  вытекающие волны при отражении фокусированных УЗ-пучков. В частности, эти волны используются в микроскопии акустической для формирования акустич. изображений и проведения количеств, измерений.

Лит.: 1) Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973; 2) Ландау Л. Д., Лифшиц Е. М., Гидродинамика, 4 изд., М., 1988; 3) Бреховских Л. М., Годин О. А., Акустика слоистых сред, М., 1989; 4) Сagniаrd L., Reflexion et refraction des ondes seismiques progressives, P., 1939; 5) Ewing W. M., Jardetzky W. S., Press F., Elastic waves in layered media, N. Y. - [a. o.], 1957, ch. 3; 6) Au1d B. A., Acoustic fields and waves in solids, v. 1 - 2, N. Y. - [a. o.], 1973; 7) Вertоni H. L., Тamir Т., Unified theory of Rayleigh-angle phenomena for acoustic beams at liquid-solid interfaces, "Appl. Phys.", 1973, v. 2, № 4, p. 157; 8) Mоtt G., Reflection and refraction coefficients at a fluid-solid interface, "J. Acoust. Soc. Amer.", 1971, v. 50, № 3 (pt 2), p. 819; 9) Вeсker F. L., Riсhardsоn R. L., Influence of material properties on Rayleigh critical-angle reflectivity, "J. Acoust. Soc. Amer.", 1972, v. 51. .V" 5 (pt 2), p. 1609; 10) Fioritо R., Ubera11 H., Resonance theory of acoustic reflection and transmission through a fluid layer, ".I. Acoust. Soc. Amer.", 1979, v. 65, № 1, p. 9; 11) Fiоrft о R., Madigоsky W., С berа 11 H., Resonance theory of acoustic waves interacting with an clastic plate. "J. Acoust. Soc. Amer.", 1979, v. 66, № 6, p. 1857; 12) Neubauer W. G., Observation of acoustic radiation from plane and curved surfaces, в кн.: Physical acoustics. Principles and methods, ed. by W. P. Mason, R. N. Thurston, v. 10, N. Y. - L., 1973, ch. 2.

Информация о работе Отражение звука