Автор работы: Пользователь скрыл имя, 20 Марта 2011 в 22:07, доклад
Рождение представлений о сложном строении атома
Но реальные процессы и состояния чаще всего являются неравновесными, а системы — открытыми. Такие процессы рассматриваются в неравновесной термодинамике.
Ле Шателье выдвинул принцип подвижного равновесия (1884). Сейчас его формулируют так: внешнее воздействие, которое выводит систему из состояния термодинамического равновесия, вызывает в ней процессы, направленные на ослабление результатов такого влияния. Появилась возможность смещать равновесие в сторону образования продуктов реакции через изменение температуры, давления и концентрации реагентов. Эти методы назвали термодинамическими.
Явление химического катализа было открыто в 1812 г. Кирхгофом. В XVIII в. уже знали о каталитическом действии селитры при получении серной кислоты, хотя смысл этого явления не поддавался объяснению. Берцеллиус связал природу взаимодействия агентов с электрохимическими потенциалами (1835), обозначив силу «вызывания химической деятельности» понятием каталитической силы. Либих предположил, что взаимодействие с катализатором может непрерывно менять химические связи в молекуле. Взгляды Либиха поддержал Д. И. Менделеев. К концу XIX в. поняли, что в реакции участвуют стенки сосуда, растворители и случайные примеси. Целенаправленное изучение катализа позволило к середине XX в. получать широкий круг органических продуктов, регулировать скорость и заданную направленность химических реакций.
Д.П.Коновалов положил начало физико-химической теории катализа, ввел понятие активной поверхности (1885) и вывел формулу для скорости автокаталитических реакций независимо от С. Оствальда. Теорией катализа занимался и Д. И. Менделеев (1886). При катализе происходит активация молекул реагента при контакте с катализатором: связи в веществе становятся более подвижными, «подталкивая» вещества к взаимодействию. В. Оствальд, сравнивая относительную активность различных кислот, пришел к выяснению условий химического равновесия и развитию катализа. Он определил катализатор как вещество, «которое изменяет скорость реакции, но не входит в состав конечного продукта реакции».
Доля каталитических процессов в химической промышленности достигает 80 %. За 50 лет катализ превратился в мощное орудие синтеза веществ. Зависимость скорости реакций от температуры исследовал С.Аррениус, предложивший (1889) закон: вероятность накопления энергии активации определяется формулой, полученной Больцманом: . Вант-Гофф исследовал причины, меняющие скорость реакций, и показал, что с ростом температуры энергия частиц при столкновениях может оказаться достаточной для начала химической реакции. Зная величины энтропии веществ, можно определить условия протекания реакции и ее направление.
Природный катализатор — хлорофилл — комплексное металло-органическое соединение в живой ткани зеленого листа. Поэтому можно считать, что процесс фотосинтеза происходит при фото-биокатализаторе, и эти реакции изучаются в целях получения еще одного источника энергии. За идеями строения эффективных биокатализаторов химики часто обращаются к живой природе. Поэтому будущее катализа — на пути между химией и биологией. Большинство биохимических процессов — каталитические. Расчет энергии активации проводится в квантовой химии.
Биокатализаторы были открыты в начале XX в. Благодаря работам французских химиков П.Сабатье и Ж.Б.Сандерана в промышленности при гидрировании органических веществ вместо благородных металлов стали использовать никель, медь, кобальт, железо. Русский химик-органик В.Н.Ипатьев исследовал каталитическое действие оксидов металлов при высоких давлениях и температурах и установил, что при использовании смеси катализаторов их действие усиливается. Каталитический способ синтеза аммиака из атмосферного азота и водорода под давлением открыл немецкий химик Ф. Габер. Затем химик-технолог К. Бош и А. Митташ предложили промышленный способ синтеза аммиака с использованием смеси катализаторов — железа, едкого калия и глинозема — при повышенных температурах и высоком давлении.
Управлять
ходом химической реакции можно
и за счет привлечения внешнего источника
энергии — световой или тепловой.
С ее помощью удается расшатать атомы
в исходной молекуле и побудить их к участию
в нужной реакции. Этим занимается область
химии, получившая название химии
экстремальных состояний.
Использованием для этой цели более жесткого
электромагнитного излучения (для молекул
с крепкими внутримолекулярными связями)
занимается радиационная
химия.
2.3
Цепные реакции и свободные
радикалы
Свободный радикал обнаружил в 1900 г. уроженец Украины М. Гомберг, создатель антифриза для автомобилей. Он выделил некое соединение, способное вступать в реакции, и доказал, что оно есть «половина молекулы». До этого считали, что только молекулы и атомы участвуют в химических реакциях. Если происходит реакция типа замещения, то выделяющаяся энергия перераспределяется между продуктами реакции. Но многие реакции идут через промежуточные продукты реакции и энергия активации понижается. Если промежуточные продукты имеют ненасыщенные валентности, это понижение особенно заметно. Такие атомы или соединения называют радикалами и обозначают точкой над символом.
М.Боденштейн обнаружил, что при взаимодействии хлора и водорода один поглощенный фотон света вызывает образование около ста тысяч молекул хлороводорода. Реакция соединения хлора с водородом идет следующим образом:
Первая ненасыщенная валентность при комнатных температурах не образуется, нужно, чтобы с какой-то внешней помощью произошло расщепление молекулы хлора на два атома, после этого реакция самопроизвольно и быстро осуществится по заданной схеме. Каждый раз вместо ненасыщенной валентности одного свободного атома появляется валентность другого атома, и этот процесс происходит поочередно. Реакция идет цепным образом, отсюда название — цепная реакция.
Понятие разветвленных цепных реакций ввели через 10 лет И.А.Кристиансен и Г. А. Крамерс, показав, что цепные реакции могут наблюдаться не только в фотохимических реакциях. Это понятие позднее заимствовали физики для описания ядерных процессов.
Советские ученые Ю.Б.Харитон и А.К.Вальтер, исследуя реакции между парами фосфора и кислородом (1926), не могли понять, почему они не шли при низких и высоких давлениях кислорода, тогда как при средних происходил взрыв. Объяснение этому явлению дал основатель научной школы по химической кинетике Н. Н. Семенов. Причиной является разветвленная цепная реакция, когда вместо одной ненасыщенной валентности получаются несколько.
Окисление водорода, например, идет по такой схеме: (зарождение цепи), (разветвление цепи), (продолжение цепи).
Возникающий на этапе зарождения цепи радикал Н02 мало активен. Итак, из одного активного центра с ненасыщенной валентностью Н получаются три гидроксида ОН и два Н. Если последние радикалы Н могут дать вновь по три радикала, то скорость реакции нарастает лавинообразно. Воспрепятствовать этому бурному процессу может только рекомбинация Н на стенках сосуда или переход валентности на неактивный радикал Н02 внутри объема. Значит, меняя условия протекания реакции, можно управлять и скоростью ее протекания. При этом важную роль играют размеры сосуда — успеют ли радикалы дойти до стенки и рекомбинировать на ней или разветвление реакции произойдет раньше, закончившись взрывом.
К
тем же выводам пришел и английский
ученый С.Н.Хиншелвуд, открывший вещества,
которые могут реагировать
Теорию цепных реакций Семенов построил и изложил в монографии «Цепные реакции» (1934). Она охватывала большое число явлений, происходящих при взрывных процессах и горении.
Примером
цепной реакции является и реакция
деления ядер урана, происходящая аналогично
химической, только вместо закона сохранения
масс действует закон сохранения и изменения
энергии (и массы). Работы, начатые в 1934
г. под руководством Э. Ферми, показали,
что ядра атомов большинства элементов
способны поглощать медленные нейтроны
и становиться радиоактивными.К 1938 г. было
обнаружено, что в уране, активизированном
нейтронами, присутствует элемент, сходный
с танталом. Этому факту есть только одно
объяснение — под действием нейтронов
атом урана делится на две примерно равные
массы. Если в уране отношение числа нейтронов
к числу протонов равно 1,6, а в тантале —
между 1,2 и 1,4, то при делении обязательно
возникнут элементы с «лишними» нейтронами.
Это значит, что нейтроны играют роль спичек,
возбуждающих реакцию деления.